154 research outputs found
Root Caries in an Optimally Fluoridated and a High-fluoride Community
The purpose of this study was to measure the prevalence and distribution of root caries in two New Mexico communities. One community, Deming, had a natural fluoride concentration of 0.7 mglL in its drinking water, optimum for its climate. The other, Lordsburg, was naturally fluoridated at 3.5 mg/L, five times the optimum. Dental examinations were carried out on 151 adults in Deming (mean age, 39.8 years) and 164 in Lordsburg (mean age, 43.2 years); only persons born in the communities were included. Prevalence of root caries was 23.8% in Deming and 7.3% in Lordsburg; mean number of lesions was 0.69 in Deming and 0.08 in Lordsburg (p < 0.0001). Although there was more gingival recession in Lordsburg, Root Caries Index scores were five times greater in Deming. Root caries was more prevalent in older age groups, and was correlated with coronal caries experience in both communities. Root caries was correlated with plaque and calculus scores in Deming only. Logistic regression showed that city of residence was the major predictor of root caries, with other significant predictors being age, education, gingival recession, and loss of periodontal attachment. When combined with previous research, these results confirm that root caries experience is directly related to the fluoride concentration in the drinking water.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66733/2/10.1177_00220345860650090801.pd
An integrated approach to modelling the fluid-structure interaction of a collapsible tube
The well known collapsible tube experiment was conducted to obtain flow, pressure and materials property data for steady state conditions. These were then used as the boundary conditions for a fully coupled fluid-structure interaction (FSI) model using a propriety computer code, LS-DYNA. The shape profiles for the tube were also recorded. In order to obtain similar collapse modes to the experiment, it was necessary to model the tube flat, and then inflate it into a circular profile, leaving residual stresses in the walls. The profile shape then agreed well with the experimental ones. Two departures from the physical properties were required to reduce computer time to an acceptable level. One of these was the lowering of the speed of sound by two orders of magnitude which, due to the low velocities involved, still left the mach number below 0.2. The other was to increase the thickness of the tube to prevent the numerical collapse of elements. A compensation for this was made by lowering the Young's modulus for the tube material. Overall the results are qualitatively good. They give an indication of the power of the current FSI algorithms and the need to combine experiment and computer models in order to maximise the information that can be extracted both in terms of quantity and quality
Grand canonical potential for a static quark--anti-quark pair at finite T/mu
We present numerical results on the static quark--anti-quark grand canonical
potential in full QCD at non-vanishing temperature () and quark chemical
potential (). Non-zero -s are reached by means of multi-parameter
reweighting. The dynamical staggered simulations were carried out for
flavors with physical quark masses on lattices.Comment: Lattice2004(non-zero
Shape-optimization of 2D hydrofoils using an isogeometric BEM solver
In this paper, an optimization procedure, based on an Isogeometric BEM solver for the potential flow, is developed and used for the shape optimization of hydrofoils. The formulation of the exterior potential-flow problem reduces to a Boundary-Integral Equation (BIE) for the associated velocity potential exploiting the null-pressure jump Kutta condition at the trailing edge. The numerical solution of the BIE is performed by an Isogeometric Boundary-Element Method (BEM) combining a generic B-splines parametric modeler for generating hydrofoil shapes, using a set of eight parameters, the very same basis of the geometric representation for representing the velocity potential and collocation at the Greville abscissas of the knot vector of the hydrofoil's B-splines representation. Furthermore, the optimization environment is developed based on the geometric parametric modeler for the hydrofoil, the Isogeometric BEM solver and an optimizer employing a controlled elitist genetic algorithm. Multi-objective hydrofoil shape optimization examples are demonstrated with respect to the criteria (i) maximum lift coefficient and (ii) minimum deviation of the hydrofoil area from a reference area
Gaussian Tunneling Model of c-Axis Twist Josephson Junctions
We calculate the critical current density for c-axis Josephson
tunneling between identical high temperature superconductors twisted an angle
about the c-axis. We model the tunneling matrix element squared as a
Gaussian in the change of wavevector q parallel to the junction, . The
obtained for the s- and extended-s-wave order parameters (OP's) are consistent
with the BiSrCaCuO data of Li {\it et al.}, but only
for strongly incoherent tunneling, . A -wave OP
is always inconsistent with the data. In addition, we show that the apparent
conventional sum rule violation observed by Basov et al. might be
understandable in terms of incoherent c-axis tunneling, provided that the OP is
not -wave.Comment: 6 pages, 6 figure
Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO
Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
Grain Surface Models and Data for Astrochemistry
AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
- …