124 research outputs found

    Aging and memory effects in beta-hydrochinone-clathrate

    Full text link
    The out-of-equilibrium low-frequency complex susceptibility of the orientational glass methanol(73%)-beta-hydrochinone-clathrate is studied using temperature-stop protocols in aging experiments . Although the material does not have a sharp glass transition aging effects including rejuvenation and memory are found at low temperatures. However, they turn out to be much weaker, however, than in conventional magnetic spin glasses.Comment: 5 pages RevTeX, 6 eps-figures include

    Treatment of Marburg and Ebola hemorrhagic fevers: A strategy for testing new drugs and vaccines under outbreak conditions.

    Get PDF
    The filoviruses, Marburg and Ebola, have the dubious distinction of being associated with some of the highest case-fatality rates of any known infectious disease-approaching 90% in many outbreaks. In recent years, laboratory research on the filoviruses has produced treatments and vaccines that are effective in laboratory animals and that could potentially drastically reduce case-fatality rates and curtail outbreaks in humans. However, there are significant challenges in clinical testing of these products and eventual delivery to populations in need. Most cases of filovirus infection are recognized only in the setting of large outbreaks, often in the most remote and resource-poor areas of sub-Saharan Africa, with little infrastructure and few personnel experienced in clinical research. Significant political, legal, and socio-cultural barriers also exist. Here, we review the present research priorities and environment for field study of the filovirus hemorrhagic fevers and outline a strategy for future prospective clinical research on treatment and vaccine prevention

    Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales

    Get PDF
    The Sun is a non-equilibrium dissipative system subjected to an energy flow which originates in its core. Convective overshooting motions create temperature and velocity structures which show a temporal and spatial evolution. As a result, photospheric structures are generally considered to be the direct manifestation of convective plasma motions. The plasma flows on the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns which are observed as a variety of multiscale magnetic patterns. High resolution magnetograms of quiet solar surface revealed the presence of magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales we used a "voids" detection method. The computed voids distribution shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at 5-10 Mm mesogranular scales. The absence of preferred scales of organization in the 2-10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale

    Scaling properties in off equilibrium dynamical processes

    Full text link
    In the present paper, we analyze the consequences of scaling hypotheses on dynamic functions, as two times correlations C(t,tâ€Č)C(t,t'). We show, under general conditions, that C(t,tâ€Č)C(t,t') must obey the following scaling behavior C(t,tâ€Č)=ϕ1(t)f(ÎČ)S(ÎČ)C(t,t') = \phi_1(t)^{f(\beta)}{\cal{S}}(\beta), where the scaling variable is ÎČ=ÎČ(ϕ1(tâ€Č)/ϕ1(t))\beta=\beta(\phi_1(t')/\phi_1(t)) and ϕ1(tâ€Č)\phi_1(t'), ϕ1(t)\phi_1(t) two undetermined functions. The presence of a non constant exponent f(ÎČ)f(\beta) signals the appearance of multiscaling properties in the dynamics.Comment: 6 pages, no figure

    Reaction Diffusion Models in One Dimension with Disorder

    Full text link
    We study a large class of 1D reaction diffusion models with quenched disorder using a real space renormalization group method (RSRG) which yields exact results at large time. Particles (e.g. of several species) undergo diffusion with random local bias (Sinai model) and react upon meeting. We obtain the large time decay of the density of each specie, their associated universal amplitudes, and the spatial distribution of particles. We also derive the spectrum of exponents which characterize the convergence towards the asymptotic states. For reactions with several asymptotic states, we analyze the dynamical phase diagram and obtain the critical exponents at the transitions. We also study persistence properties for single particles and for patterns. We compute the decay exponents for the probability of no crossing of a given point by, respectively, the single particle trajectories (Ξ\theta) or the thermally averaged packets (ξˉ\bar{\theta}). The generalized persistence exponents associated to n crossings are also obtained. Specifying to the process A+A→∅A+A \to \emptyset or A with probabilities (r,1−r)(r,1-r), we compute exactly the exponents ÎŽ(r)\delta(r) and ψ(r)\psi(r) characterizing the survival up to time t of a domain without any merging or with mergings respectively, and ÎŽA(r)\delta_A(r) and ψA(r)\psi_A(r) characterizing the survival up to time t of a particle A without any coalescence or with coalescences respectively. ξˉ,ψ,ÎŽ\bar{\theta}, \psi, \delta obey hypergeometric equations and are numerically surprisingly close to pure system exponents (though associated to a completely different diffusion length). Additional disorder in the reaction rates, as well as some open questions, are also discussed.Comment: 54 pages, Late

    Elementary Excitations in Dimerized and Frustrated Heisenberg Chains

    Full text link
    We present a detailed numerical analysis of the low energy excitation spectrum of a frustrated and dimerized spin S=1/2S=1/2 Heisenberg chain. In particular, we show that in the commensurate spin--Peierls phase the ratio of the singlet and triplet excitation gap is a universal function which depends on the frustration parameter only. We identify the conditions for which a second elementary triplet branch in the excitation spectrum splits from the continuum. We compare our results with predictions from the continuum limit field theory . We discuss the relevance of our data in connection with recent experiments on CuGeO3CuGeO_{3}, NaV2O5NaV_2O_5, and (VO)2P2O7(VO)_2P_2O_7.Comment: Corrections to the text + 1 new figure, will appear in PRB (august 98

    Absorbing-state phase transitions in fixed-energy sandpiles

    Get PDF
    We study sandpile models as closed systems, with conserved energy density ζ\zeta playing the role of an external parameter. The critical energy density, ζc\zeta_c, marks a nonequilibrium phase transition between active and absorbing states. Several fixed-energy sandpiles are studied in extensive simulations of stationary and transient properties, as well as the dynamics of roughening in an interface-height representation. Our primary goal is to identify the universality classes of such models, in hopes of assessing the validity of two recently proposed approaches to sandpiles: a phenomenological continuum Langevin description with absorbing states, and a mapping to driven interface dynamics in random media. Our results strongly suggest that there are at least three distinct universality classes for sandpiles.Comment: 41 pages, 23 figure

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Yield of Photoperiod-sensitive Sorghum Hybrids Based on Guinea-race Germplasm under Farmers’ Field Conditions in Mali

    Get PDF
    The first sorghum [Sorghum bicolor (L.) Moench] hybrids based on West African Guinea-race-derived parents were created to enhance farmer’s food security and income through increased yields. To assess their performance, eight hybrids, six experimental pure-line cultivars, one pure-line check (Lata), and a highly adapted landrace cultivar (Tieble) were evaluated in 27 farmer-managed and two on-station yield trials in Mali, West Africa, from 2009 to 2011. The hybrids were confirmed to have photoperiod sensitivity similar to the well-adapted Guinea landrace check cultivar. Genotypic differences for on-farm grain yield were highly significant and genotype × environment crossover interactions were limited. The yield superiorities of individual hybrids, relative to the landrace check, ranged from 17 to 37% over the 27 on-farm trials. The three top yielding hybrids showed 30% yield advantages across productivity levels, with absolute yield advantages averaging 380 kg ha−1 under lower (1.0–1.5 t ha−1) and 660 kg ha−1 under higher (2.0–3.5 t ha−1) productivity conditions. A mean male-parent (better parent) heterosis of 26% was observed for the four hybrids having Lata as a male parent. As the hybrids studied here were obtained with a low intensity of selection using a limited number of parents, even greater yield superiorities may be attained with development of distinct parental pools and scaled-up hybrid breeding
    • 

    corecore