73 research outputs found

    Retinal nerve fiber layer thickness predicts CSF amyloid/tau before cognitive decline

    Get PDF
    Background: Alzheimer's disease (AD) pathology precedes symptoms and its detection can identify at-risk individuals who may benefit from early treatment. Since the retinal nerve fiber layer (RNFL) is depleted in established AD, we tested whether its thickness can predict whether cognitively healthy (CH) individuals have a normal or pathological cerebrospinal fluid (CSF) A f42 (A) and tau (T) ratio. Methods: As part of an ongoing longitudinal study, we enrolled CH individuals, excluding those with cognitive impairment and significant ocular pathology. We classified the CH group into two sub-groups, normal (CH-NAT, n = 16) or pathological (CH-PAT, n = 27), using a logistic regression model from the CSF AT ratio that identified >85% of patients with a clinically probable AD diagnosis. Spectral-domain optical coherence tomography (OCT) was acquired for RNFL, ganglion cell-inner plexiform layer (GC-IPL), and macular thickness. Group differences were tested using mixed model repeated measures and a classification model derived using multiple logistic regression. Results: Mean age (\ub1 standard deviation) in the CH-PAT group (n = 27; 75.2 \ub1 8.4 years) was similar (p = 0.50) to the CH-NAT group (n = 16; 74.1 \ub1 7.9 years). Mean RNFL (standard error) was thinner in the CH-PAT group by 9.8 (2.7) \u3bcm; p < 0.001. RNFL thickness classified CH-NAT vs. CH-PAT with 87% sensitivity and 56.3% specificity. Conclusions: Our retinal data predict which individuals have CSF biomarkers of AD pathology before cognitive deficits are detectable with 87% sensitivity. Such results from easy-to-acquire, objective and non-invasive measurements of the RNFL merit further study of OCT technology to monitor or screen for early AD pathology

    Choroidal thickness and the retinal ganglion cell complex in chronic Leberʼs hereditary optic neuropathy: a prospective study using swept-source optical coherence tomography

    Get PDF
    Background/Objectives: Choroidal thinning has been suggested in Leber�s hereditary optic neuropathy (LHON). No study has been conducted of the choroid in relation to the retinal ganglion cell-inner plexiform layer (RGC-IPL). We sought to measure choroidal thickness in chronic LHON and to correlate thickness changes with the RGC-IPL. Subjects/Methods: Chronic LHON, 11778 mitochondrial DNA (mtDNA) mutation, patients (26 eyes; mean age: 35.1 ± 16.1 years) were prospectively recruited at Doheny Eye Center, University of California Los Angeles from March 2016 to July 2017. Age-matched healthy controls (27 eyes; mean age: 32.4 ± 11.1 years) were enroled for comparison. Swept-source optical coherence tomography (SS-OCT) imaging was performed in chronic LHON patients and compared with age-matched healthy controls. Results: The macular choroid was significantly thinner in chronic LHON (250.5 ± 62.2 μm) compared with controls (313.9 ± 60.2 μm; p < 0.0001). The peripapillary choroid was also significantly thinner in chronic LHON (135.7 ± 51.4 μm) compared with controls (183.0 ± 61.8 μm, p < 0.001). Choroidal thickness strongly correlated with retinal nerve fibre layer (RNFL) thickness in both the macular (R2 = 0.72; 95 CI, 0.57�0.84) and peripapillary regions (R2 = 0.53; 95 CI, 0.31�0.70). Choroidal thickness was also significantly correlated with macular RGC-IPL thickness (R2 = 0.51; 95 CI, 0.26�0.73). Conclusions: Choroidal thinning in chronic LHON correlated strongly with both RNFL and RGC-IPL thicknesses. These findings may suggest a pathophysiological mechanism involving vascular pathology of the choroid in relation to the retinal ganglion cell complex in LHON. © 2019, The Author(s), under exclusive licence to The Royal College of Ophthalmologists

    Changes in Choroidal Thickness follow the RNFL Changes in Leber's Hereditary Optic Neuropathy

    Get PDF
    Leber's hereditary optic neuropathy (LHON) is typically characterized by vascular alterations in the acute phase. The aim of this study was to evaluate choroidal changes occurring in asymptomatic, acute and chronic stages of LHON. We enrolled 49 patients with LHON, 19 with Dominant Optic Atrophy (DOA) and 22 healthy controls. Spectral Domain-Optical Coherence Tomography (SD-OCT) scans of macular and peripapillary regions were performed in all subjects, to evaluate macular and peripapillary choroidal thickness, and retinal nerve fiber layer (RNFL) thicknes. Macular and peripapillary choroidal thicknesses were significantly increased in the acute LHON stage. On the contrary, macular choroidal thickness was significantly reduced in the chronic stage. Furthermore, peripapillary choroidal thickness was decreased in chronic LHON and in DOA. Both RNFL and choroid had the same trend (increased thickness, followed by thinning), but RNFL changes preceded those affecting the choroid. In conclusion, our study quantitatively demonstrated the involvement of the choroid in LHON pathology. The increase in choroidal thickness is a feature of the LHON acute stage, which follows the thickening of RNFL. Conversely, thinning of the choroid is the common outcome in chronic LHON and in DOA

    Multiwavelength behaviour of the blazar 3C 279: Decade-long study from γ -ray to radio

    Get PDF
    We report the results of decade-long (2008-2018) γ -ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and γ -ray light curves correlate well, with no delay ≳ 3 h, implying general cospatiality of the emission regions. The γ -ray-optical flux-flux relation changes with activity state, ranging from a linear to amore complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain γ -ray variability on very short time-scales. The MgII emission line flux in the 'blue' and 'red' wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the τ= 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at ∼5 GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet. © 2020 The Author(s).We thank the referee for attentive reading and comments that helped to improve presentation of the manuscript. The data collected by the WEBT collaboration are stored in the WEBT archive at the Osservatorio Astrofisico di Torino -INAF (ht tp://www.oato.inaf.it/blazars/webt/); for questions regarding their availability, please contact the WEBT President Massimo Villata([email protected]).TheSt.Petersburg University team acknowledges support from Russian Science Foundation grant 17-12-01029. The research at BU was supported in part by National Science Foundation grant AST-1615796 and NASA Fermi Guest Investigator grants 80NSSC17K0649, 80NSSC19K1504, and 80NSSC19K1505. The PRISM camera at Lowell Observatory was developed by K. Janes et al. at BU and Lowell Observatory, with funding from the NSF, BU, and Lowell Observatory. The emission-line observations made use of the DCT at Lowell Observatory, supported by Discovery Communications, Inc., BU, the University of Maryland, the University of Toledo, and Northern Arizona University. The VLBA is an instrument of the National Radio Astronomy Observatory. The National Radio Astronomy Observatory is a facility of the US NSF, operated under cooperative agreement by Associated Universities, Inc. This research has used data from the UMRAO which was supported by the University of Michigan; research at this facility was supported by NASA under awards NNX09AU16G, NNX10AP16G, NNX11AO13G, and NNX13AP18G, and by the NSF under award AST-0607523. The Steward Observatory spectropolarimetric monitoring project was supported by NASA Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G, and NNX15AU81G. The Torino group acknowledges financial contribution from agreement ASI-INAF n.2017-14-H.0 and from contract PRIN-SKA-CTA-INAF 2016. I.A. acknowledges support by a Ramon y Cajal grant (RYC-2013-14511) of the 'Ministerio de Ciencia, Innovacion, y Universidades (MICIU)' of Spain and from MCIU through the 'Center of Excellence Severo Ochoa' award for the Instituto de Astrofisica de Andalucia-CSIC (SEV-20170709). Acquisition and reduction of the POLAMI and MAPCAT data were supported by MICIU through grant AYA2016-80889-P. The POLAMI observations were carried out at the IRAM 30-m Telescope, supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The MAPCAT observations were carried out at theGerman-Spanish Calar Alto Observatory, jointly operated by the Max-Plank-Institut fur Astronomie and the Instituto de Astrofisica de Andalucia-CSIC. The study is based partly on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC. The OVRO 40-m monitoring program is supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G, and NSF grants AST-0808050 and AST-1109911. TH was supported by the Academy of Finland projects 317383 and 320085. AZT-24 observations were made within an agreement between Pulkovo, Rome and Teramo observatories. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The Abastumani team acknowledges financial support by the Shota Rustaveli National Science Foundation under contract FR/217950/16. r This research was partially supported by the Bulgarian National Science Fund of the Ministry of Education and Science under grants DN 081/2016, DN 18-13/2017, KP-06-H28/3 (2018), and KP-06-PN38/1 (2019), Bulgarian National Science Programme 'Young Scientists and Postdoctoral Students 2019', Bulgarian National Science Fund under grant DN18-10/2017 and National RI Roadmap Projects DO1-157/28.08.2018 and DO1-153/28.08.2018 of the Ministry of Education and Science of the Republic of Bulgaria. GD and OV gratefully acknowledge observing grant support from the Institute of Astronomy and Rozhen National Astronomical Observatory via bilateral joint research project `Study of ICRF radio-sources and fast variable astronomical objects' (head -G. Damljanovic). This work was partly supported by the National Science Fund of the Ministry of Education and Science of Bulgaria under grant DN 08-20/2016, and by project RD-08-37/2019 of the University of Shumen. This work is a part of projects nos 176011, 176004, and 176021, supported by theMinistry of Education, Science and Technological Development of the Republic of Serbia. MGM acknowledges support through the Russian Government Program of Competitive Growth of Kazan Federal University. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the 'Unite des Communes vald 'otainesMont-Emilius'. The research at the OAVdA was partially funded by several `Research and Education' annual grants from Fondazione CRT. This article is partly based on observations made with the IAC80 and TCS telescopes operated by the Instituto de Astrofisica de Canarias in the Spanish Observatorio del Teide on the island of Tenerife. A part of the observations were carried out using theRATAN-600 scientific equipment (SAO of the Russian Academy of Sciences)

    Multiwavelength variability of BL Lacertae measured with high time resolution

    Full text link
    In an effort to locate the sites of emission at different frequencies and physical processes causing variability in blazar jets, we have obtained high time-resolution observations of BL Lacertae over a wide wavelength range: with the Transiting Exoplanet Survey Satellite (TESS) at 6000–10000 Å with 2 minute cadence; with the Neil Gehrels Swift satellite at optical, UV, and X-ray bands; with the Nuclear Spectroscopic Telescope Array at hard X-ray bands; with the Fermi Large Area Telescope at γ-ray energies; and with the Whole Earth Blazar Telescope for measurement of the optical flux density and polarization. All light curves are correlated, with similar structure on timescales from hours to days. The shortest timescale of variability at optical frequencies observed with TESS is ~0.5 hr. The most common timescale is 13 ± 1 hr, comparable with the minimum timescale of X-ray variability, 14.5 hr. The multiwavelength variability properties cannot be explained by a change solely in the Doppler factor of the emitting plasma. The polarization behavior implies that there are both ordered and turbulent components to the magnetic field in the jet. Correlation analysis indicates that the X-ray variations lag behind the γ-ray and optical light curves by up to ~0.4 day. The timescales of variability, cross-frequency lags, and polarization properties can be explained by turbulent plasma that is energized by a shock in the jet and subsequently loses energy to synchrotron and inverse Compton radiation in a magnetic field of strength ~3 G.Accepted manuscrip

    Multiwavelength behaviour of the blazar 3C 279: decade-long study from γ-ray to radio

    Get PDF
    We report the results of decade-long (2008–2018) γ-ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and γ-ray light curves correlate well, with no delay ≳ 3 h, implying general cospatiality of the emission regions. The γ-ray–optical flux–flux relation changes with activity state, ranging from a linear to a more complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain γ-ray variability on very short time-scales. The Mg ii emission line flux in the ‘blue’ and ‘red’ wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the τ = 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at ∼5 GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet.First author draf

    The whole earth blazar telescope campaign on the intermediate BL Lac object 3C 66A in 2007-2008

    Get PDF
    Prompted by a high optical state in 2007 September, the Whole Earth Blazar Telescope consortium organized an intensive optical, near-IR (JHK) and radio observing campaign on the intermediate BL Lac object 3C 66A throughout the fall and winter of 2007-2008. In this paper, we present data from 28 observatories in 12 countries, covering the observing season from late 2007 July through 2008 February. The source remained in a high optical state throughout the observing period and exhibited several bright flares on timescales of 10 days. This included an exceptional outburst around 2007 September 15-20, reaching a peak brightness at R 13.4. Our campaign revealed microvariability with flux changes up to |dR/dt| 0.02 mag hr-1. Our observations do not reveal evidence for systematic spectral variability in the overall high state covered by our campaign, in agreement with previous results. In particular, we do not find evidence for spectral hysteresis in 3C 66A for which hints were found in an earlier campaign in a somewhat lower flux state. We also did not find any evidence for spectral lags in the discrete correlation functions between different optical bands. We infer a value of the magnetic field in the emission region of B 19 e 2/7B τ-6/7h D 13/71 G, where eB is the magnetic field equipartition fraction, τh is the shortest observed variability timescale in units of hours, and D 1 is the Doppler factor in units of 10. From the lack of systematic spectral variability, we can derive an upper limit on the Doppler factor, D ≤ 28 τ-1/8h e 3/16B. This is in perfect agreement with superluminal motion measurements with the VLBI/VLBA of βapp ≤ 27 and argues against models with very high Lorentz factors of Γ ≳ 50, required for a one-zone synchrotron-self-Compton interpretation of some high-frequency-peaked BL Lac objects detected at TeV γ-ray energies. © 2009 The American Astronomical Society

    The correlated optical and radio variability of BL Lacertae - WEBT data analysis 1994-2005

    Get PDF
    Since 1997, BL Lacertae has undergone a phase of high optical activity, with the occurrence of several prominent outbursts. Starting from 1999, the Whole Earth Blazar Telescope (WEBT) consortium has organized various multifrequency campaigns on this blazar, collecting tens of thousands of data points. One of the main issues in the study of this huge dataset has been the search for correlations between the optical and radio flux variations, and for possible periodicities in the light curves. The analysis of the data assembled during the first four campaigns (comprising also archival data to cover the period 1968-2003) revealed a fair optical-radio correlation in 1994-2003, with a delay of the hard radio events of ~100 days. Moreover, various statistical methods suggested the existence of a radio periodicity of ~8 years. In 2004 the WEBT started a new campaign to extend the dataset to the most recent observing seasons, in order to possibly confirm and better understand the previous results. In this campaign we have collected and assembled about 11000 new optical observations from twenty telescopes, plus near-IR and radio data at various frequencies. Here, we perform a correlation analysis on the long-term R-band and radio light curves. In general, we confirm the ~100-day delay of the hard radio events with respect to the optical ones, even if longer (~200-300 days) time lags are also found in particular periods. The radio quasi-periodicity is confirmed too, but the "period" seems to progressively lengthen from 7.4 to 9.3 years in the last three cycles. The optical and radio behaviour in the last forty years suggests a scenario where geometric effects play a major role. In particular, the alternation of enhanced and suppressed optical activity (accompanied by hard and soft radio events, respectively) ca

    The high activity of 3C 454.3 in autumn 2007: Monitoring by the WEBT during the AGILE detection

    Get PDF
    The quasar-type blazar 3C 454.3 underwent a phase of high activity in summer and autumn 2007, which was intensively monitored in the radio-to-optical bands by the Whole Earth Blazar Telescope (WEBT). The gamma-ray satellite AGILE detected this source first in late July, and then in November-December 2007. In this letter we present the multifrequency data collected by the WEBT and collaborators during the second AGILE observing period, complemented by a few contemporaneous data from UVOT onboard the Swift satellite. The aim is to trace in detail the behaviour of the synchrotron emission from the blazar jet, and to investigate the contribution from the thermal emission component. Optical data from about twenty telescopes have been homogeneously calibrated and carefully assembled to construct an R-band light curve containing about 1340 data points in 42 days. This extremely well-sampled optical light curve allows us to follow the dramatic flux variability of the source in detail. In addition, we show radio-to-UV spectral energy distributions (SEDs) at different epochs, which represent different brightness levels. In the considered period, the source varied by 2.6 mag in a couple of weeks in the R band. Many episodes of fast (i.e. intranight) variability were observed, most notably on December 12, when a flux increase of about 1.1 mag in 1.5 hours was detected, followed by a steep decrease of about 1.2 mag in 1 hour. The contribution by the thermal component is difficult to assess, due to the uncertainties in the Galactic, and possibly also intrinsic, extinction in the UV band. However, polynomial fitting of radio-to-UV SEDs reveals an increasing spectral bending going towards fainter states, suggesting a UV excess likely due to the thermal emission from the accretion disc

    The GASP-WEBT monitoring of 3C 454.3 during the 2008 optical-to-radio and γ-ray outburst

    Get PDF
    Since 2001, the radio quasar 3C 454.3 has undergone a period of high optical activity, culminating in the brightest optical state ever observed, during the 2004-2005 outburst. The Whole Earth Blazar Telescope (WEBT) consortium has carried out several multifrequency campaigns to follow the source behaviour. The GLAST-AGILE Support Program (GASP) was born from the WEBT to provide long-term continuous optical-to-radio monitoring of a sample of gamma-loud blazars, during the operation of the AGILE and GLAST (now known as Fermi GST) gamma-ray satellites. The main aim is to shed light on the mechanisms producing the high-energy radiation, through correlation analysis with the low-energy emission. Thus, since 2008 the monitoring task on 3C 454.3 passed from the WEBT to the GASP, while both AGILE and Fermi detected strong gamma-ray emission from the source. We present the main results obtained by the GASP at optical, mm, and radio frequencies in the 2008-2009 season, and compare them with the WEBT results from previous years. An optical outburst was observed to peak in mid July 2008, when Fermi detected the brightest gamma-ray levels. A contemporaneous mm outburst maintained its brightness for a longer time, until the cm emission also reached the maximum levels. The behaviour compared in the three bands suggests that the variable relative brightness of the different-frequency outbursts may be due to the changing orientation of a curved inhomogeneous jet. The optical light curve is very well sampled during the entire season, which is also well covered by the various AGILE and Fermi observing periods. The relevant cross-correlation studies will be very important in constraining high-energy emission models
    corecore