38 research outputs found

    On the Hausdorff volume in sub-Riemannian geometry

    Full text link
    For a regular sub-Riemannian manifold we study the Radon-Nikodym derivative of the spherical Hausdorff measure with respect to a smooth volume. We prove that this is the volume of the unit ball in the nilpotent approximation and it is always a continuous function. We then prove that up to dimension 4 it is smooth, while starting from dimension 5, in corank 1 case, it is C^3 (and C^4 on every smooth curve) but in general not C^5. These results answer to a question addressed by Montgomery about the relation between two intrinsic volumes that can be defined in a sub-Riemannian manifold, namely the Popp and the Hausdorff volume. If the nilpotent approximation depends on the point (that may happen starting from dimension 5), then they are not proportional, in general.Comment: Accepted on Calculus and Variations and PD

    Continuity of Optimal Control Costs and its application to Weak KAM Theory

    Get PDF
    We prove continuity of certain cost functions arising from optimal control of affine control systems. We give sharp sufficient conditions for this continuity. As an application, we prove a version of weak KAM theorem and consider the Aubry-Mather problems corresponding to these systems.Comment: 23 pages, 1 figures, added explanations in the proofs of the main theorem and the exampl

    Geometric Approach to Pontryagin's Maximum Principle

    Get PDF
    Since the second half of the 20th century, Pontryagin's Maximum Principle has been widely discussed and used as a method to solve optimal control problems in medicine, robotics, finance, engineering, astronomy. Here, we focus on the proof and on the understanding of this Principle, using as much geometric ideas and geometric tools as possible. This approach provides a better and clearer understanding of the Principle and, in particular, of the role of the abnormal extremals. These extremals are interesting because they do not depend on the cost function, but only on the control system. Moreover, they were discarded as solutions until the nineties, when examples of strict abnormal optimal curves were found. In order to give a detailed exposition of the proof, the paper is mostly self\textendash{}contained, which forces us to consider different areas in mathematics such as algebra, analysis, geometry.Comment: Final version. Minors changes have been made. 56 page

    BRST analysis of general mechanical systems

    Full text link
    We study the groups of local BRST cohomology associated to the general systems of ordinary differential equations, not necessarily Lagrangian or Hamiltonian. Starting with the involutive normal form of the equations, we explicitly compute certain cohomology groups having clear physical meaning. These include the groups of global symmetries, conservation laws and Lagrange structures. It is shown that the space of integrable Lagrange structures is naturally isomorphic to the space of weak Poisson brackets. The last fact allows one to establish a direct link between the path-integral quantization of general not necessarily variational dynamics by means of Lagrange structures and the deformation quantization of weak Poisson brackets.Comment: 38 pages, misprints corrected, references and the Conclusion adde

    Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing

    Get PDF
    We study controllability issues for the 2D Euler and Navier- Stokes (NS) systems under periodic boundary conditions. These systems describe motion of homogeneous ideal or viscous incompressible fluid on a two-dimensional torus T^2. We assume the system to be controlled by a degenerate forcing applied to fixed number of modes. In our previous work [3, 5, 4] we studied global controllability by means of degenerate forcing for Navier-Stokes (NS) systems with nonvanishing viscosity (\nu > 0). Methods of dfferential geometric/Lie algebraic control theory have been used for that study. In [3] criteria for global controllability of nite-dimensional Galerkin approximations of 2D and 3D NS systems have been established. It is almost immediate to see that these criteria are also valid for the Galerkin approximations of the Euler systems. In [5, 4] we established a much more intricate suf- cient criteria for global controllability in finite-dimensional observed component and for L2-approximate controllability for 2D NS system. The justication of these criteria was based on a Lyapunov-Schmidt reduction to a finite-dimensional system. Possibility of such a reduction rested upon the dissipativity of NS system, and hence the previous approach can not be adapted for Euler system. In the present contribution we improve and extend the controllability results in several aspects: 1) we obtain a stronger sufficient condition for controllability of 2D NS system in an observed component and for L2- approximate controllability; 2) we prove that these criteria are valid for the case of ideal incompressible uid (\nu = 0); 3) we study solid controllability in projection on any finite-dimensional subspace and establish a sufficient criterion for such controllability

    On post-Lie algebras, Lie--Butcher series and moving frames

    Full text link
    Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. They have been studied extensively in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan's method of moving frames. Lie--Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie--Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie--Butcher series are related to invariants of curves described by moving frames.Comment: added discussion of post-Lie algebroid

    Symplectic geometry of constrained optimization

    No full text
    In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index. We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude
    corecore