38 research outputs found
On the Hausdorff volume in sub-Riemannian geometry
For a regular sub-Riemannian manifold we study the Radon-Nikodym derivative
of the spherical Hausdorff measure with respect to a smooth volume. We prove
that this is the volume of the unit ball in the nilpotent approximation and it
is always a continuous function. We then prove that up to dimension 4 it is
smooth, while starting from dimension 5, in corank 1 case, it is C^3 (and C^4
on every smooth curve) but in general not C^5. These results answer to a
question addressed by Montgomery about the relation between two intrinsic
volumes that can be defined in a sub-Riemannian manifold, namely the Popp and
the Hausdorff volume. If the nilpotent approximation depends on the point (that
may happen starting from dimension 5), then they are not proportional, in
general.Comment: Accepted on Calculus and Variations and PD
Continuity of Optimal Control Costs and its application to Weak KAM Theory
We prove continuity of certain cost functions arising from optimal control of
affine control systems. We give sharp sufficient conditions for this
continuity. As an application, we prove a version of weak KAM theorem and
consider the Aubry-Mather problems corresponding to these systems.Comment: 23 pages, 1 figures, added explanations in the proofs of the main
theorem and the exampl
Controllability on infinite-dimensional manifolds
Following the unified approach of A. Kriegl and P.W. Michor (1997) for a
treatment of global analysis on a class of locally convex spaces known as
convenient, we give a generalization of Rashevsky-Chow's theorem for control
systems in regular connected manifolds modelled on convenient
(infinite-dimensional) locally convex spaces which are not necessarily
normable.Comment: 19 pages, 1 figur
Geometric Approach to Pontryagin's Maximum Principle
Since the second half of the 20th century, Pontryagin's Maximum Principle has
been widely discussed and used as a method to solve optimal control problems in
medicine, robotics, finance, engineering, astronomy. Here, we focus on the
proof and on the understanding of this Principle, using as much geometric ideas
and geometric tools as possible. This approach provides a better and clearer
understanding of the Principle and, in particular, of the role of the abnormal
extremals. These extremals are interesting because they do not depend on the
cost function, but only on the control system. Moreover, they were discarded as
solutions until the nineties, when examples of strict abnormal optimal curves
were found. In order to give a detailed exposition of the proof, the paper is
mostly self\textendash{}contained, which forces us to consider different areas
in mathematics such as algebra, analysis, geometry.Comment: Final version. Minors changes have been made. 56 page
BRST analysis of general mechanical systems
We study the groups of local BRST cohomology associated to the general
systems of ordinary differential equations, not necessarily Lagrangian or
Hamiltonian. Starting with the involutive normal form of the equations, we
explicitly compute certain cohomology groups having clear physical meaning.
These include the groups of global symmetries, conservation laws and Lagrange
structures. It is shown that the space of integrable Lagrange structures is
naturally isomorphic to the space of weak Poisson brackets. The last fact
allows one to establish a direct link between the path-integral quantization of
general not necessarily variational dynamics by means of Lagrange structures
and the deformation quantization of weak Poisson brackets.Comment: 38 pages, misprints corrected, references and the Conclusion adde
Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing
We study controllability issues for the 2D Euler and Navier-
Stokes (NS) systems under periodic boundary conditions. These systems
describe motion of homogeneous ideal or viscous incompressible fluid on
a two-dimensional torus T^2. We assume the system to be controlled by
a degenerate forcing applied to fixed number of modes.
In our previous work [3, 5, 4] we studied global controllability by
means of degenerate forcing for Navier-Stokes (NS) systems with nonvanishing
viscosity (\nu > 0). Methods of dfferential geometric/Lie algebraic
control theory have been used for that study. In [3] criteria for
global controllability of nite-dimensional Galerkin approximations of
2D and 3D NS systems have been established. It is almost immediate
to see that these criteria are also valid for the Galerkin approximations
of the Euler systems. In [5, 4] we established a much more intricate suf-
cient criteria for global controllability in finite-dimensional observed
component and for L2-approximate controllability for 2D NS system.
The justication of these criteria was based on a Lyapunov-Schmidt
reduction to a finite-dimensional system. Possibility of such a reduction
rested upon the dissipativity of NS system, and hence the previous
approach can not be adapted for Euler system.
In the present contribution we improve and extend the controllability
results in several aspects: 1) we obtain a stronger sufficient condition for
controllability of 2D NS system in an observed component and for L2-
approximate controllability; 2) we prove that these criteria are valid for
the case of ideal incompressible uid (\nu = 0); 3) we study solid controllability
in projection on any finite-dimensional subspace and establish a
sufficient criterion for such controllability
On post-Lie algebras, Lie--Butcher series and moving frames
Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on
differential manifolds. They have been studied extensively in recent years,
both from algebraic operadic points of view and through numerous applications
in numerical analysis, control theory, stochastic differential equations and
renormalization. Butcher series are formal power series founded on pre-Lie
algebras, used in numerical analysis to study geometric properties of flows on
euclidean spaces. Motivated by the analysis of flows on manifolds and
homogeneous spaces, we investigate algebras arising from flat connections with
constant torsion, leading to the definition of post-Lie algebras, a
generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately
associated with euclidean geometry, post-Lie algebras occur naturally in the
differential geometry of homogeneous spaces, and are also closely related to
Cartan's method of moving frames. Lie--Butcher series combine Butcher series
with Lie series and are used to analyze flows on manifolds. In this paper we
show that Lie--Butcher series are founded on post-Lie algebras. The functorial
relations between post-Lie algebras and their enveloping algebras, called
D-algebras, are explored. Furthermore, we develop new formulas for computations
in free post-Lie algebras and D-algebras, based on recursions in a magma, and
we show that Lie--Butcher series are related to invariants of curves described
by moving frames.Comment: added discussion of post-Lie algebroid
Symplectic geometry of constrained optimization
In this paper, we discuss geometric structures related to the Lagrange multipliers rule. The practical goal is to explain how to compute or estimate the Morse index of the second variation. Symplectic geometry allows one to effectively do it even for very degenerate problems with complicated constraints. The main geometric and analytic tool is an appropriately rearranged Maslov index. We try to emphasize the geometric framework and omit analytic routine. Proofs are often replaced with informal explanations, but a well-trained mathematician will easily rewrite them in a conventional way. We believe that Vladimir Arnold would approve of such an attitude