242 research outputs found

    Avascular Necrosis of the Foot and Ankle in a Patient with Systemic Sclerosis: A Case Based Review

    Get PDF
    This review describes a case of atraumatic avascular necrosis in the foot and ankle in a patient with systemic sclerosis who did not receive corticosteroid therapy. Both avascular necrosis and systemic sclerosis are uncommon disease entities. This case demonstrates that vasculitis and secondary vasoconstriction in the pathogenesis of systemic sclerosis are important risk factors for the development of avascular necrosis of the foot and ankle. Therefore, if these patients develop chronic foot and ankle pain, avascular necrosis should be included in the differential diagnosis, even if they do not receive corticosteroids. For the diagnosis and follow-up of avascular necrosis MRI remains the gold standard. Thus, MRI should be used to diagnose avascular necrosis in an early stage. Level of Clinical Evidence: 4.This review describes a case of atraumatic avascular necrosis in the foot and ankle in a patient with systemic sclerosis who did not receive corticosteroid therapy. Both avascular necrosis and systemic sclerosis are uncommon disease entities. This case demonstrates that vasculitis and secondary vasoconstriction in the pathogenesis of systemic sclerosis are important risk factors for the development of avascular necrosis of the foot and ankle. Therefore, if these patients develop chronic foot and ankle pain, avascular necrosis should be included in the differential diagnosis, even if they do not receive corticosteroids. For the diagnosis and follow-up of avascular necrosis MRI remains the gold standard. Thus, MRI should be used to diagnose avascular necrosis in an early stage. Level of Clinical Evidence: 4

    Genome-wide BAC-end sequencing of Cucumis melo using two BAC libraries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although melon (<it>Cucumis melo </it>L.) is an economically important fruit crop, no genome-wide sequence information is openly available at the current time. We therefore sequenced BAC-ends representing a total of 33,024 clones, half of them from a previously described melon BAC library generated with restriction endonucleases and the remainder from a new random-shear BAC library.</p> <p>Results</p> <p>We generated a total of 47,140 high-quality BAC-end sequences (BES), 91.7% of which were paired-BES. Both libraries were assembled independently and then cross-assembled to obtain a final set of 33,372 non-redundant, high-quality sequences. These were grouped into 6,411 contigs (4.5 Mb) and 26,961 non-assembled BES (14.4 Mb), representing ~4.2% of the melon genome. The sequences were used to screen genomic databases, identifying 7,198 simple sequence repeats (corresponding to one microsatellite every 2.6 kb) and 2,484 additional repeats of which 95.9% represented transposable elements. The sequences were also used to screen expressed sequence tag (EST) databases, revealing 11,372 BES that were homologous to ESTs. This suggests that ~30% of the melon genome consists of coding DNA. We observed regions of microsynteny between melon paired-BES and six other dicotyledonous plant genomes.</p> <p>Conclusion</p> <p>The analysis of nearly 50,000 BES from two complementary genomic libraries covered ~4.2% of the melon genome, providing insight into properties such as microsatellite and transposable element distribution, and the percentage of coding DNA. The observed synteny between melon paired-BES and six other plant genomes showed that useful comparative genomic data can be derived through large scale BAC-end sequencing by anchoring a small proportion of the melon genome to other sequenced genomes.</p

    Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhibitor of DNA binding/Inhibitor of differentiation 4 (<it>ID4</it>) is a critical factor for cell proliferation and differentiation in normal vertebrate development. <it>ID4</it> has regulative functions for differentiation and growth of the developing brain. The role of <it>ID1</it>, <it>ID2</it> and <it>ID3</it> are expected to be oncogenic due to their overexpression in pancreatic cancer and colorectal adenocarcinomas, respectively. Aside from these findings, loss of <it>ID3</it> expression was demonstrated in ovarian cancer. The aim of the present study was to reveal the factual role of <it>ID4</it> in carcinogenesis in more detail, since its role for the pathogenesis of human breast cancer has been discussed controversially, assigning both oncogenic and tumour suppressive functions. </p> <p>Methods</p> <p><it>ID4</it> promoter methylation, <it>ID4</it> mRNA expression and <it>ID4</it> protein expression were analysed in primary human breast cancer specimens using methylation-specific PCR (MSP) (n=170), semiquantitative realtime RT-PCR (n=46) and immunhistochemistry (n=3), respectively. In order to demonstrate a functional association of <it>ID4</it> promoter methylation with its gene silencing, we performed DNA demethylation analysis with four human breast cell lines using MSP and semiquantitative realtime RT-PCR. In addition, we performed correlations of <it>ID4</it> promoter methylation with <it>ID4</it> mRNA and <it>ID4</it> protein expression in matched samples of breast tumour and corresponding normal tissue. We carried out statistical analyses in order to find correlations between <it>ID4</it> promoter methylation and clinicopathological parameters. </p> <p>Results</p> <p>Frequent <it>ID4</it> promoter methylation was observed in primary breast cancer samples (69%, 117/170). We found a tight correlation (P<0.0001) between <it>ID4</it> promoter methylation and loss of <it>ID4</it> expression in primary breast cancer 3 specimens. Demethylating treatment with breast cancer cell lines was associated with clear ID4 mRNA re-expression. Tumours with <it>ID4</it> promoter methylation showed distinct loss of <it>ID4</it> expression on both transcription and protein level. Interestingly, <it>ID4</it> promoter methylation was a factor for unfavourable recurrence-free survival (P=0.036) and increased risk for lymph node metastasis (P=0.030). </p> <p>Conclusion</p> <p>ID4 is indeed a novel tumour suppressor gene in normal human breast tissue and is epigenetically silenced during cancer development, indicating increased risk for tumour relapse. Thus, <it>ID4</it> methylation status could serve as a prognostic biomarker in human breast cancer.</p

    The DAC system and associations with multiple myeloma

    Get PDF
    Despite the clear progress achieved in recent years in the treatment of MM, most patients eventually relapse and therefore novel therapeutic options are still necessary for these patients. In this regard, several drugs that target specific mechanisms of the tumor cells are currently being explored in the preclinical and clinical setting. This manuscripts offers a review of the rationale and current status of the antimyeloma activity of one of the most relevant examples of these targeted drugs: deacetylase inhibitors (DACi). Several studies have demonstrated the prooncogenic activity of deacetylases (DACs) through the targeting not only of histones but also of non histone proteins relevant to tumor progression, such as p53, E2F family members, Bcl-6, Hsp90, HIF-1α or Nur77. This fact together with the DACs overexpression present in several tumors, has prompted the development of some DACi with potential antitumor effect. This situation is also evident in the case of MM as two mechanisms of DACi, the inhibition of the epigenetic inactivation of p53 and the blockade of the unfolded protein response, through the inhibition of the aggressome formation (by targeting DAC6) and the inactivation of the chaperone system (by acetylating HSP-90), provides the rationale for the exploration of the potential antimyeloma activity of these compounds. Several DACi with different chemical structure and different selectivity for targeting the DAC families have been tested in MM. Their preclinical activity in monotherapy has been quite exciting and has been described to be mediated by various mechanisms: the induction of apoptosis and cell cycle arrest mainly by the upregulation of p21; the interferece with the interaction between plasma cells and the microenvironment, by reducing the expression and signalling of several cytokines or by inhibiting angiogenesis. Finally they also have a role in protecting murine models from myeloma bone disease. Neverteless, the clinical activity in monotherapy of these drugs in relapsed/refractory MM patients has been very modest. This has prompted the development of combinations such as the one with bortezomib or lenalidomide and dexamethasone, which have already been taken into the clinics with positive preliminary results

    Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation

    Get PDF
    The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph–mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.Vers un modĂšle intĂ©gratif de la bicouche lipidique de la membrane plasmique vĂ©gĂ©taleDĂ©veloppement d’une infrastructure française distribuĂ©e pour la mĂ©tabolomique dĂ©diĂ©e Ă  l’innovatio

    Transcriptomic Events Involved in Melon Mature-Fruit Abscission Comprise the Sequential Induction of Cell-Wall Degrading Genes Coupled to a Stimulation of Endo and Exocytosis

    Get PDF
    Background: Mature-fruit abscission (MFA) in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ) at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation. Principal Findings: The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression. Although some genes displayed similar regulation in both early and late induction of abscission, such as EXT1-EXT4, EGase1, IAA2, ERF1, AP2D15, FLC, MADS2, ERAF17, SAP5 and SCL13 genes, the majority had different expression patterns. This implies that time-specific events occur during MFA, and emphasizes the value of characterizing multiple time-specific abscission transcriptomes. Analysis of gene-expression from these AZs reveal that a sequential induction of cell-wall-degrading genes is associated with the upregulation of genes involved in endo and exocytosis, and a shift in plant-hormone metabolism and signaling genes during MFA. This is accompanied by transcriptional activity of small-GTPases and synthaxins together with tubulins, dynamins, V-type ATPases and kinesin-like proteins potentially involved in MFA signaling. Early events are potentially controlled by down-regulation of MADS-box, AP2/ERF and Aux/IAA transcription-factors, and up-regulation of homeobox, zinc finger, bZIP, and WRKY transcription-factors, while late events may be controlled by up-regulation of MYB transcription-factors. Significance: Overall, the data provide a comprehensive view on MFA in fleshy-fruit, identifying candidate genes and pathways associated with early induction of MFA. Our comprehensive gene-expression profile will be very useful for elucidating gene regulatory networks of the MFA in fleshy-fruit

    Absence of a specific radiation signature in post-Chernobyl thyroid cancers

    Get PDF
    Thyroid cancers have been the main medical consequence of the Chernobyl accident. On the basis of their pathological features and of the fact that a large proportion of them demonstrate RET-PTC translocations, these cancers are considered as similar to classical sporadic papillary carcinomas, although molecular alterations differ between both tumours. We analysed gene expression in post-Chernobyl cancers, sporadic papillary carcinomas and compared to autonomous adenomas used as controls. Unsupervised clustering of these data did not distinguish between the cancers, but separates both cancers from adenomas. No gene signature separating sporadic from post-Chernobyl PTC (chPTC) could be found using supervised and unsupervised classification methods although such a signature is demonstrated for cancers and adenomas. Furthermore, we demonstrate that pooled RNA from sporadic and chPTC are as strongly correlated as two independent sporadic PTC pools, one from Europe, one from the US involving patients not exposed to Chernobyl radiations. This result relies on cDNA and Affymetrix microarrays. Thus, platform-specific artifacts are controlled for. Our findings suggest the absence of a radiation fingerprint in the chPTC and support the concept that post-Chernobyl cancer data, for which the cancer-causing event and its date are known, are a unique source of information to study naturally occurring papillary carcinomas

    In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?

    Get PDF
    Background: There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (~23.8 Gb/C). [br/] Methodology/Principal Findings: A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). [br/] Conclusions/Significance: This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome

    Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach

    Get PDF
    Background: Fruit ripening and softening are key traits that have an effect on food supply, fruit nutritional value and consequently, human health. Since ethylene induces ripening of climacteric fruit, it is one of the main targets to control fruit over ripening that leads to fruit softening and deterioration. The characterization of the ethylene pathway in Arabidopsis and tomato identified key genes that control fruit ripening. [br/] Methodology/Principal Findings: To engineer melon fruit with improved shelf-life, we conducted a translational research experiment. We set up a TILLING platform in a monoecious and climacteric melon line, cloned genes that control ethylene production and screened for induced mutations that lead to fruits with enhanced shelf life. Two missense mutations, L124F and G194D, of the ethylene biosynthetic enzyme, ACC oxidase 1, were identified and the mutant plants were characterized with respect to fruit maturation. The L124F mutation is a conservative mutation occurring away from the enzyme active site and thus was predicted to not affect ethylene production and thus fruit ripening. In contrast, G194D modification occurs in a highly conserved amino acid position predicted, by crystallographic analysis, to affect the enzymatic activity. Phenotypic analysis of the G194D mutant fruit showed complete delayed ripening and yellowing with improved shelf life and, as predicted, the L124F mutation did not have an effect. [br/] Conclusions/Significance: We constructed a mutant collection of 4023 melon M2 families. Based on the TILLING of 11 genes, we calculated the overall mutation rate of one mutation every 573 kb and identified 8 alleles per tilled kilobase. We also identified a TILLING mutant with enhanced fruit shelf life. This work demonstrates the effectiveness of TILLING as a reverse genetics tool to improve crop species. As cucurbits are model species in different areas of plant biology, we anticipate that the developed tool will be widely exploited by the scientific community
    • 

    corecore