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Abstract

Background: Mature-fruit abscission (MFA) in fleshy-fruit is a genetically controlled process with mechanisms that, contrary
to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the
transcriptomes of melon abscission zone (AZ) at three stages during AZ-cell separation in order to understand MFA control
at an early stage of AZ-activation.

Principal Findings: The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by
late induction of MFA, melon AZ shows major gene repression. Although some genes displayed similar regulation in both
early and late induction of abscission, such as EXT1-EXT4, EGase1, IAA2, ERF1, AP2D15, FLC, MADS2, ERAF17, SAP5 and SCL13
genes, the majority had different expression patterns. This implies that time-specific events occur during MFA, and
emphasizes the value of characterizing multiple time-specific abscission transcriptomes. Analysis of gene-expression from
these AZs reveal that a sequential induction of cell-wall-degrading genes is associated with the upregulation of genes
involved in endo and exocytosis, and a shift in plant-hormone metabolism and signaling genes during MFA. This is
accompanied by transcriptional activity of small-GTPases and synthaxins together with tubulins, dynamins, V-type ATPases
and kinesin-like proteins potentially involved in MFA signaling. Early events are potentially controlled by down-regulation of
MADS-box, AP2/ERF and Aux/IAA transcription-factors, and up-regulation of homeobox, zinc finger, bZIP, and WRKY
transcription-factors, while late events may be controlled by up-regulation of MYB transcription-factors.

Significance: Overall, the data provide a comprehensive view on MFA in fleshy-fruit, identifying candidate genes and
pathways associated with early induction of MFA. Our comprehensive gene-expression profile will be very useful for
elucidating gene regulatory networks of the MFA in fleshy-fruit.

Funding: This work was supported by the ‘Ministerio de Ciencia e Innovación’, Spain (BFU2010-18116). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.
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Introduction

Melon (Cucumis melo L.), an important crop worldwide and an

annual diploid plant, has a high intra-specific genetic variation and

a small genome size (454 Mb), which can be exploited to dissect

biological processes of great technological importance, among

them flavour development and textural changes that occur during

fruit ripening [1,2]. The amount of genomic information available

for melon has been increasing recently. Efforts have been made to

generate melon genetic maps [3–5], the construction of bacterial

artificial chromosome (BAC) libraries [6], the development of

oligo-based microarrays [7,8], the production of TILLING and

EcoTILLING platforms [9], and the development of a collection

of near isogenic lines (NILs) [10]. Several large expressed sequence

tag (EST) datasets have recently been generated in melon,

including approximately 350,000 ESTs generated [11], using the

454 pyrosequencing technologies, and an additional 127,000 ESTs

generated using the traditional Sanger sequencing approach [12],

Recentely, the genome of melon has been sequenced under the

Spanish Genomics Initiative MELONOMICS [13].

Melon has a great potential for becoming a model for

understanding important traits in fruiting crops [2]. The melon

comprises climacteric and non-climacteric genotypes. The melon-

fruit ripening of several cultivated genotypes and wild ecotypes is

climacteric and often associated with mature-fruit abscission

(MFA) [2]. Typical climacteric phenotypes with high ethylene

production, such as Cucumis melo var cantalupensis, have a fast

ripening rate and short shelf-life. In cantaloupe as in other

climacteric fruit, exogenous ethylene can prematurely induce fruit

abscission, ethylene production, and ripening. Cantaloupe Char-

entais melons (cv Védrantais) have been transformed with an



antisense construct of an ACC oxidase cDNA driven by the 35S

promoter [14]. A line of the antisense lines generated showed a

reduction of ethylene production by more than 99.5% which

resulted in strong effects on the ripening and MFA processes [15].

Thus, the climateric increase in ethylene production is responsible

of both fruit ripening and induction of MFA. Melon genotypes

without MFA or without ethylene burst also exist and are,

therefore, non-climacteric, as C. melo var inodorus, unable to

produce autocatalytic ethylene, generally have a slow ripening rate

associated with a long shelf-life or as Songwhan Charmi PI 161375

(C. melo var chinensis) [2]. By studying the segregation of the

activation of the abscission zone (AZ) and ethylene production on

a population of recombinant cantaloupe Charentais 6PI 161375

inbred lines, we have previously demonstrated that both the MFA

and climacteric characters were controlled by two duplicated

independent loci (Al-3 and Al-4) and that the intensity of ethylene

production was controlled by at least four quantitative trait loci

(QTLs) localized in other genomic regions [16]. The QTLs

associated with ethylene production and respiration rate in this

work were not located at the same position with the Al loci

described, and none of the Al loci matched with known genes of

the ethylene biosynthetic or signaling pathways [16]. Taken

together, these data suggest that both the MFA as well as

climacteric characters are under complex regulation.

In this study, we seek to elucidate the molecular bases of MFA

in melon, as a model organism for the study of fleshy fruit

abscission and ripening [2,16]. In fleshy fruit abscission, ethylene

signaling and biosynthesis have been investigated in immature-

fruit such as peach [17,18], persimmon [19], and apple [20], as

well as in MFA such as in apple [21] and in olive [22]. Recent

global transcriptome studies have provided information about

immature-fruit abscission in apple [23]. However, the global

transcriptome analysis during MFA has not been studied in any

species having fleshy fruit. Here, we present a comprehensive

study of gene-expression profiles in melon fruit-AZ at crucial

stages during AZ-cell separation to gain a complete picture of the

genes and metabolic processes involved in the MFA, with

particular emphasis on MFA control at a stage of AZ-activation.

To this end, a pyrosequencing analysis was performed for the fruit-

AZs in melon. Assembly of roughly 134 Mb of transcript

sequences yielded more than 9,000 significant proteins. Hierar-

chical clustering of the 4,801 differentially expressed genes,

indicated a transcriptional cascade in which relatively larger

numbers of genes were early-induced during MFA, and few genes

were late-induced transiently in melon AZ. Specific candidate

genes that have not previously been reported to be associated with

abscission, and metabolic pathways were identified to be involved

in early and late induction of MFA. The results reveal the

distinctiveness of the early transcriptome in comparison with that

of the late transcriptome during MFA in melon.

Results and Discussion

Identification of Fruit-AZ Genes by Melon
Pyrosequencing and Gene Ontology Groups in Early and
Late Induction of MFA

Anatomical changes during mature-fruit abscission (MFA) of

cantaloupe fruit include cell separation and cell collapse [24].

The critical anatomical change is that of cell separation, the

nature and magnitude of which determine the manner and

extent to which the fruit and pedicel ultimately split apart [24].

In Védrantais melon fruits, as a cantaloupe fruit, the climacteric

increase of ethylene production synchronizes the ripening and

MFA processes [2,16]. As reported previously [15,16], Védran-

tais fruits displayed a characteristic peak of ethylene production

(Fig. 1A) at 37 days post-anthesis (DPA), and they mature and

ripen on the vine for approximately 42 DPA, at which time

they abscise (Fig. 1B). MFA was studied in the pedicel-fruit AZ

of Védrantais fruit (Fig. 1B, 1C). The AZ tissues were manually

dissected from longitudinal sections of the samples with a razor

blade into pieces until a maximum width of 1 mm on each side

of the abscission fracture plane (Fig. 1C). The AZ was

characterized in Védrantais melon fruit by scanning electron

microscopy (SEM) at 30, 36, 38, and 40 DPA, comprising 30–

35 cell layers (Fig. 1D, 1H, 1I, 1J). Fig. 1D shown that the

tissue samples used in this study (white box) were strongly

enriched in AZ cells. The first report in the literature on

anatomical aspect of abscission in cantaloupe fruit referred to

melon cv. Powdery Mildew Resistant no. 45 [24]. In this melon,

structural modifications in AZ cell walls are accompanied by

histochemical changes which culminate in the abscission of the

fruit from the pedicel during the 10-day period prior to

abscission (from 32–42 DPA); however, in Védrantais melon the

histochemical changes including increases of lignin take place

during the 6-day period prior to abscission (from 37–42 DPA)

(data not shown) and, thus, the extent of this period depends on

the cultivar. Hence, in Védrantais melon, the activation of the

ZA and the onset of ripening process take place at 37 DPA,

and the induction of MFA occurs during a period from 37–42

DPA. It is interesting to note that the external evidence of

separation is a crack between the pedicel and fruit, first evident

at 38 DPA (Fig. 1F). During this period of MFA induction, the

cell separation followed by collapse is characteristic of cortical

parenchyma cells of the AZ [24]. Initially, the AZ of Védrantais

fruit at 38 DPA reveals a small separation cavity within the

zone (Fig. 1I), and subsequently at 40 DPA shows a cell

separation and extensive cell collapse (Fig. 1J). To identify

differences in transcript abundance related to aspects of the

induction of MFA, the AZ transcriptomes of melon fruit during

cell separation were compared: pre-cell separation (36 DPA) and

first external evident of cell separation or partial cell separation

(38 DPA; early induction of abscission). Also, in a second

experiment, the fruit AZ transcriptomes of melon at partial cell

separation (38 DPA; early induction of abscission) and almost

complete cell separation and cell collapse (40 DPA; late

induction of abscission) were similarly compared (Fig. 1). These

three samples (AZ at 36, 38, and 40 DPA) represent critical

physiological and anatomical changes during the period prior to

abscission at 42 DPA, at that time MFA is complete (Fig. 1).

This emphasizes the value of characterizing multiple time-

specific abscission transcriptomes. After preparation of the

cDNA libraries and their pyrosequencing, a total of 134 Mb

of sequences (483,704 good-quality sequence reads) were

obtained for the three samples. These sequences were assembled

into 14,162 contigs, and after gene modeling into 12,871 isotigs

(2,792 for 36 DPA, 7,315 for 38 DPA, and 2,764 for 40 DPA,

respectively) (Table 1, Figure S1), of which 10,513 were isotigs

with functional annotation. About a third of the isotigs did not

found similar protein sequences and therefore represent a source

for new gene discovery. The detection of genes was based on

BLASTX against the set of reference Uniprot proteins (See

Material and Methods). The number of different genes detected

considering the three samples as a whole was 5,953. Analysis of

the levels of expression for the 10,513 annotated isotigs leaded

to the identification of 4,801 differentially expressed genes (45%)

in our experiments (P,0.01), which are hereafter referred to as

group I, while the remaining 5,712 genes with either

nondifferential representation or low read abundance are



referred to as group II. Among the 4,801 differentially expressed

genes (P,0.01), 2,689 genes were abscission-responsive in the

first experiment (between the fruit AZ at 36 DPA and 38 DPA,

early abscission induction), and 2,112 were abscission-responsive

in the second experiment (between fruit AZ at 38 DPA and 40

DPA, late abscission induction). In the first experiment, 1,790

genes were up-regulated, and 899 were down-regulated in fruit

AZ at 38 DPA in the experiment. In the second experiment,

802 genes were up-regulated, and 1,310 were down-regulated in

fruit AZ at 40 DPA in the experiment (the UniProt IDs for

abscission-responsive genes are listed in Tables S1,S2,S3,S4). A

comparison of the genes which were abscission-responsive

during early and late induction experiments indicated that 79

were up-regulated in both experiments, and that 530 were

down-regulated in both experiments (Fig. 2A, Tables S5–S6),

with the majority of the differentially expressed genes up-

regulated (1,790 vs. 899 down-regulated genes) occurring during

early induction of MFA (Fig. 2B), whereas the majority of the

differentially expressed genes down-regulated (1,310 vs. 802 up-

regulated genes) occurring during late induction of abscission in

melon-fruit AZ (Fig. 2B).

For the analysis of which cellular processes are critical during

MFA, transcripts were grouped by their expression signatures

across the three samples. Hierarchical cluster analysis of group I

genes enabled the identification of three major clusters, termed A,

B, and C, which contained 795, 1,228 and 537 genes, respectively.

These groups of genes were subsequently divided into three (A1,

A2, A3), three (B1, B2 B3), and three (C1, C2, C3) subclusters,

respectively (Figure S2). In general, transcripts that exhibited a

transcription peak at 36, 38 or 40 DAP were grouped into cluster

A, B, or C, respectively. The most abundant transcripts for each

cluster are listed in Table S7. Noticeable is the fact that most of the

differentially regulated genes (55%) in our experiments have no

previously assigned function.

For overall view of the processes and functions altered during

the early and late induction of MFA, classification of the

differentially expressed genes was performed using the Gene

Ontology (GO) database. GO accessions were further assigned to

the differentially expressed genes based on their sequence

Figure 1. Ethylene production and anatomical observation of the fruit AZ of Charentais melon (C. melo var. cantalupensis Naud,
‘Védrantais’). (A) Internal ethylene concentration in melon fruit of Védrantais from 30–40 days post-anthesis (DPA). (B) Védrantais melon fruit at the
time abscission is complete (42 DPA). Appearance of the mature-fruit AZ, located between the pedicel and fruit, after fruit abscission at 42 DPA.
Arrows point to the AZ of Védrantais melon fruit. (C) Photographs of a longitudinal section of Védrantais fruit illustrating the position of the tissue
sample of the AZ (black box) for RNA extraction and anatomical changes. Fruit AZs were manually dissected with a razor blade and separated by
cutting approximately 1 mm on each side of the abscission fracture plane. The broken line indicates the position of the abscission fracture plane. (D)
Scanning electron micrograph (SEM) of a longitudinal section illustrating the AZ of Védrantais fruit at 30 DPA, showing that the tissue samples used in
this study (white box) were strongly enriched in mature fruit AZ cells. The broken line indicates the position of the abscission fracture plane. (E, F, G)
Macro-photographs at 36, 38, and 40 DPA showing the aspect of the fruit area where abscission takes place. The external evidence of separation is a
crack between the pedicel and fruit, first evident at 38 DPA. (H, I, J) SEM of the tissue sample of the AZ of Védrantais fruit at 36 (fruit-AZ pre-cell
separation), 38 DPA (fruit-AZ partial cell separation), and 40 DPA (almost complete fruit-AZ cell separation and cell collapse). Scale bars: 1 mm in Fig.
1D and 500 mm in Figs. 1H,1I, 1J.
doi:10.1371/journal.pone.0058363.g001



similarities to known proteins in the UniProt database annotated

with GO accessions as well as InterPro and Pfam domains they

contain. Of the 10,513 annotated isotigs, 6,431 were assigned at

least one GO term (Table 1). Several GO classifications were over-

represented in genes that had increased or decreased transcript

accumulation during early and/or late-induction of MFA. The

GO terms ‘Metabolic process’, ‘Catalytic activity’, and ‘Mem-

brane’ were most represented among the biological process (Figure

S3), molecular function (Figure S4), and cellular component

(Figure S5) categories, respectively. Most terms showed a higher

number of up-regulated than down-regulated genes during early

induction of MFA, indicating that the strong trend towards gene

up-regulation was distributed among the different categories. The

up-regulated group during early induction of MFA with the

highest number of the differentially expressed genes was ‘Meta-

bolic process’, ‘Oxidation reduction’, ‘Protein amino acid phos-

Table 1. Results of the 454 sequencing runs.

Data Fruit-AZ at 36 DPA Fruit-AZ at 38 DPA Fruit-AZ at 40 DPA

Raw reads 115,760 273,169 95,228

Raw nucleotides 35,885,600 87,414,080 29,520,680

Raw mean length 310 320 310

Clean and processed reads 115,643 272,930 95,131

Clean nucleotides 31,196184 77,108,803 25,853,453

Clean and processed mean length 270 282 272

Total number of contigs 3,067 8,154 2941

Average contig size 611 653 607

Total number of isotigs 2,792 7,315 2,764

Detected proteins 2,014 5,009 2,050

Proteins with GO annotations 1,387 3,558 1,486

Proteins with EC number annotation 272 767 352

doi:10.1371/journal.pone.0058363.t001

Figure 2. Melon-AZ genes during MFA. A, The differentially expressed genes in fruit-AZ during early [comparison of fruit-AZ at 36 DPA (pre-cell
separation) and at 38 DPA (partial cell separation)], and late [comparison of fruit-AZ at 38 DPA (partial cell separation) and at 40 DPA (almost
complete cell separation)] induction of melon MFA. B, The percentages of up-regulated and down-regualted genes during early and late induction of
melon MFA.
doi:10.1371/journal.pone.0058363.g002



phorylation’, ‘Carbohydrate metabolic process’, ‘Transmembrane

transport’, and ‘Regulation of transcription’ (Figure S3A).

Characterization of Cell-wall-related Genes Associated
with Early and Late Induction of MFA

Previous investigations using microarrays and differential

screening techniques have identified AZ-specific or AZ-enriched

genes related to cell-wall rearrangements [23,25,26]. Analysis of

our current data set confirms the abscission-induced accumulation

of transcripts putatively involved in changing cell-wall composition

and properties, including 79 differentially expressed genes that

encode proteins with probable functions in cell-wall remodeling

during melon MFA (Fig. 3; Tables S8, S9). Of cell-wall-related

differentially expressed genes, 52 (three polygalacturonases (PGs),

two pectinesterases (PEs), one b-fructofuranosidase, two a-

expansins (a-EXPs), three b-expansins (b-EXPs), one chitinase,

one b-1,3-glucanase, five endo-b-1,4-glucanases (EGases or Cels),

one glucan endo-1,3-b-glucosidase, one xyloglucan endotransglu-

cosylase/hydrolase (XTH), two pectate lyases (PLs), nine b-

galactosidases, and other proteins) were up-regulated exclusively

during early induction of MFA, and six (two PEs, one extensin

(EXT), one chitinase, and two b-EXPs) were up-regulated

exclusively during late induction of MFA, whereas only two genes

were up-regulated during both the early and late induction of

MFA. Thus, our approach provided results that corroborate, and

expand on, previous experiments identifying pathways of cell-wall

synthesis and breakdown as being induced during abscission of

other plant organs such as immature fruits, floral, and leaf

[23,25,27].

In cluster A, the most abundant transcripts encode XTH2 and

callose synthase 2 (CALS2). As XTHs are involved in the

modification of the load-bearing cell-wall components, XTHs

were typically up-regulated during the abscission process in

soybean leaf, arabidopsis stamen, citrus leaf, tomato flower, and

rose petal [25,27,28,29,30]. Our results showed that 2 XTHs, i.e.,

CmXTH2 and CmXTH13, are down- and up-regulated, respec-

tively, during early induction of MFA, suggesting that the role of

CmXTH2 in mature-fruit AZ could be related to the maintenance

of the structural integrity of the cell-wall, and the decrease in

CmXTH2 expression during early induction of melon MFA may

contribute to cell-wall loosening, which is regulated through

different XTH genes, such as CmXHT13. On the other hand,

CmXTH13 expression is strongly down-regulated during late

induction of MFA in melon-AZ, suggesting that CmXTH13

action may not be important for wall restructuring after AZ-cell

separation. Expression of other melon XTH genes (CmXTH1 and

CmXTH3) has been previously shown to be ripening-associated,

but is only partially ethylene-dependent, suggesting that they do

not play a significant role in ethylene-dependent melon-fruit

softening [31]. Previously, XTH2 has been identified as XTH

under brassinosteroid (BR) control, whereas XTH13 has been

previously identified as XTH under combined auxin and BR

control during low-blue induced shade-avoidance responses of

arabidopsis seedlings [32]. On the base of homology, we thus

hypothesize that auxin and BR may regulate CmXTH13 during

melon MFA, by which they could regulate cell-wall organization

in AZ. Thus, these results indicate that the two XHT genes have

diversified their expression profile within the fruit-AZ in such a

way as to take responsibility for particular roles in the cell-wall

dynamics.

At 38 DPA, three different PG genes are induced in melon-AZ

during early induction, but late-repressed during MFA. Our

analysis showed that MPG2 expression, and not MPG1, is up- and

down-regulated in melon-AZ during early and late induction of

MFA, respectively, suggesting that MPG2 could play role in early

loosening events influencing wall porosity. Genetic analysis has

demonstrated that ADPG1 and ADPG2 are essential for silique

dehiscence in arabidopsis [33]. In addition, ADPG2 contributes to

floral organ abscission, while ADPG1 and ADPG2 genes

contribute to anther dehiscence [33]. Our data also show that 2

PL, and 3 PE genes were strongly up-regulated during early

induction of MFA, suggesting that these types of enzymes may also

contribute to wall loosening associated with melon MFA, as

previously indicated in stamen, leaf, and petal abscission

[27,29,30]. Similarly, our results indicate that 5 EXP (EXP5, b-

EXP1, b-EXP3, a-EXP3, a-EXP7) genes were up-regulated during

early induction of abscission, as previously demonstrated in the

abscission process [28,34]. These results raise the possibility that

several EXPs may act in cell enlargement during early induction of

melon MFA. On the other hand, two cell-wall-related genes,

EXT1-EXT4 and EGase1, were found in our analysis to be up-

regulated specifically in melon-AZ during both the early and late

induction of MFA. The EXT1-EXT4 gene is induced by

wounding, and by a range of stimuli such as abscisic acid (ABA),

jasmonic-acid (JA), and salicylic-acid (SA) [35].

Notably, in our analysis, a novel cell-wall-related gene,

EXORDIUM (EXO) like 2 (EL2), was found to be up-regulated in

melon-AZ during early induction of MFA. This extracellular EXO

gene was identified as a potential mediator of BR-promoted

growth [36], and it is part of a gene family with eight members in

arabidopsis. As EXO is presumably involved in a signaling process

which coordinates BR-responses with environmental or develop-

mental signals, it cannot be ruled out that EXO protein might be

involved in cell enlargement associated with the early induction of

melon MFA. Recently, other gene under control of BR, XET-BR1,

has been found to be involved in tomato flower abscission [25].

Thus, here, we found strong up-regulation of EXO in melon-AZ,

which could likely to act downstream of the BR signaling pathway

in melon-AZ, and may mediate MFA via modifications of cell-wall

properties and metabolism.

Profile cluster C includes transcripts accumulating in AZ sample

at 40 DPA, such as one PE, two chitinases, two b-EXPs, and two

EXTs, indicating that these types of enzymes may be required for

complete cell separation of mature-fruit, and possibly for wall

restructuring after AZ -cell separation. Accumulation of chitinases

has been associated with plant defense [37,27]. In the present

work, AZ pyrosequencing analysis revealed that out of 4 genes

encoding chitinases analyzed, expression of 3 chitinase genes are

up-regulated in melon-AZ during MFA (1 early and 2 late

induction), while expression of only one endochitinase (MCHT-2)

is down-regulated and up-regulated during early and late

induction of MFA, respectively, indicating that MCHT-2 act

exclusively in late events throughout cell separation in melon.

Thus, our study indicates that all members of the PG, PL, EGase,

b-1,3-glucanase, b-glucosidase, and b-galactosidase families were

strongly up-regulated exclusively during early induction of MFA,

suggesting that these types of enzymes act synergistically in early

loosening events to remodel the cell-wall, while expression of

members of the PE, EXP, a-glucosidase, and EXT families proved

to be up-regulated during early induction and remained steady or

became highest throughout cell separation, implying that these

types of enzymes have the potential for dual effects on loosening

and cell separation.

Vesicle Trafficking is Related to Early Induction of Melon
MFA

Gene expression up-regulated in melon-AZ indicates cell-wall

rearrangements between 38 and 40 DPA. Changes in deposition





of wall material require vesicle formation and transport, reflected

by a large number of up-regulated genes at 38 DPA (Table S10).

Kinesin motors, Rab-GTPases together with tubulins are poten-

tially involved in vesicles and organelle transport [38]. In

particular, Rab-GTPases have been shown to be important

regulators of the endomembrane traffic, mediating communica-

tion between vacuole, plasma membrane, ER, Golgi, and cell-wall

[39]. However, little is known about Rab-GTPases participating in

abscission. Here, among Rab-GTPases identified in our analysis,

22 Rab-GTPases were up-regulated at 38 DAP in melon-AZ

(Table S10), indicating that at least some members of Rab-

GTPases play major roles in secretion and/or recycling of cell-wall

components during early induction of melon MFA. 8 Rab11

(corresponding to the arabidopsis RabA clade), 3 Rab2 (corre-

sponding to RabB), 2 Rab18 (corresponding to RabC), 3 Rab1

(corresponding to RabD), 2 Rab8 (corresponding to RabE), 2

Rab5 (corresponding to RabF), 2 Rab7 (corresponding to RabG)

proteins, and one Rab6 (corresponding to RabH) protein from

melon are expressed strongly in fruit-AZ at 38 DPA (Fig. 4). Thus,

they are diferent classes of Rab-GTPase protein and would,

therefore be expected to regulate either exocytosis from the trans-

Golgi network, transport to the plasma membrane and the cell-

wall, endocytosis or vacuolar trafficking during melon MFA

(Fig. 4). This implies their involvement in mediating delivery to the

apoplast of cell-wall-depolymerizing enzymes required for cell

expansion and cell-wall loosening at 38 DPA in melon-AZ.

Notably, the synthaxin SYP121 (t-SNARE family), which has been

related to ABA-responsive secretion [40], is also up-regulated

during early induction of MFA. On this basis, it might be asked

whether this SYP121 protein plays an essential part together with

some of the different up-regulated Rab-GTPases in melon AZ for

the transport of proteins and membrane through the endomem-

brane system to their destination, and whether this transport plays

a critical role in mediating plant-hormone signals during melon

MFA. A gene that encodes an ADP-ribosylation factor GTPase-

activating protein (ARF-GAP), NEVERSHED (NEV), has been

proposed to regulate the movement of proteins essential for

activating cell separation in arabidopsis [41]. Our results

demonstrate that some members of ARFs were up-regulated

during early induction of MFA (Table S10), strengthening the

possibility that ARF GTPase-regulated endosome trafficking can

play a role for abscission signaling. Of particular interest is also the

set of two members of RAN GTPases family homologous to

RAN3 [42]. The up-regulation of these genes in fruit-AZ at 38 or

40 DPA suggests that they may function in mediation of

nucleocytoplasmic transport during abscission signaling. It bears

noting that the overexpression of TaRAN1 and OsRAN2 renders

arabidopsis hypersensitive to auxin and ABA, respectively [43,44],

and thus these two signaling pathways might be particularly

sensitive to perturbing components of nucleocytoplasmic traffick-

ing. Other up-regulated gene homologous to MIRO1, encodes a

member of Rho GTPase family that have evolved to regulate

mitochondrial trafficking [45]. Therefore, these results raise the

possibility that several families of small-GTPases may act in vesicle

trafficking during MFA, including Rabs, ARFs, RANs and Rhos.

Other genes were noticeably present in fruit-AZ at 38 DPA and

involved vesicle trafficking, encode V-type ATPases, and midasins,

which were involved in trafficking from the trans-Golgi Network to

the central vacuole. Thus, these data suggest that vesicular

trafficking may regulate cell separation during early induction of

melon MFA.

A model integrating the potential roles of membrane trafficking

and receptor-like kinase (RLK) signaling during organ separation

has been recently presented in arabidopsis floral abscission [46]. In

arabidopsis, floral abscission is controlled by the competing

activities of several leucine-rich repeat receptor-like protein kinases

(LRR-RLKs) [46,47,48]. Here, expression analysis detects several

LRR-RLKs and RLKs up-regulated and down-regulated at 38 or

40 DPA in melon-AZ (Table S11). These results potentially signify

the involvement of several RLKs in regulating melon MFA. In

addition, a subset of 181 genes encoding phosphoproteins was

defined as being significantly changed in abundance during melon

MFA (Table S11). Kinase motifs in abscission-responsive proteins

matched to casein kinases, shaggy-related protein kinase, CBL-

interacting protein kinase, CBL-interacting serine/threonine-

protein kinase (CIPK), calcium-dependent protein kinase (CDPK,

CPK), mitogen-activated protein (MAP) kinase (MPK), wall-

associated kinase (WAK), and S-locus-like receptor protein kinase,

indicating a possible critical function of these kinase classes in the

regulation of cell separation during melon MFA. Expression of

casein kinase genes was preferentially detected in laminar AZ cells

in citrus leaves during ethylene-promoted abscission [27]. Other

phosphoproteins that mediate cells communicate and perceive

signals via cell-walls, such as MAPK, WAK, and leucine rich

receptor kinase, are up-regulated at 38 DPA suggesting that they

may have regulatory functions in macromolecular trafficking

between cell-wall and membrane in fruit-AZ during early

induction of melon MFA. A previous study has shown that some

MPKK or MEK proteins, MKK4 and MKK5, are involved

during the cell separation phase of the floral abscission process in

arabidopsis, but are not required for the AZ formation [47].

On the other hand, our results also appear to reflect differences

in AZ transport during early and late induction of MFA (Figure

S6); for example, the early transport results mainly accomplished

by the gene activity of boron and nitrate transporters and the late

transport by phosphate transporter, whereas the transport of

sodium and calcium are associated with both early and late

induction of melon MFA.

Characterization of Plant-hormone-related Genes
Associated with Early and Late Induction of MFA

Several plant-hormone pathways, such as of ethylene, auxin,

ABA, and JA are involved in abscission processes [26]. In our

study, among the 116 differentially expressed genes (P,0.01,

group I) related to plant-hormone metabolism and signaling

(Tables S12,S13,S14), those related to ethylene (28 genes) and

ABA (23 genes) were the most represented, followed by those

related to auxin (16 genes), JA (15 genes), and SA (12 genes).

Few genes related to polyamine (8 genes), BR (7 genes),

cytokinine (CK, 4 genes), or gibberellin (GA, 3 genes) were

found. Expression patterns within these pathways were then

analyzed by hierarchical clustering, and these pathways are

shown in Figs. 5,6,7,8. Differential expression is indicated by a

color scale that reflects the coefficient of variation. The resulting

Figure 3. Expression profile of family genes encoding various cell-wall proteins during melon MFA. Sequences were selected after
establishing a P,0.01. Gene-expression levels at 36, 38, and 40 DAP are indicated with colored bars. For the sample displaying maximal expression
level, the normalized transcript abundance is expressed as the number of transcripts per total transcripts. For the other sample, expression level is
indicated as percentages of the maximal normalized transcript abundance of the gene, as described in the color code from 0% (white) to 100% (dark
blue). Additional information on the cell-wall-related genes is presented in Tables S8 and S9.
doi:10.1371/journal.pone.0058363.g003



colored pathway figures indicate putative nodes of transcrip-

tional regulation across the profiles of the three samples.

Both the early and late induction of MFA in melon-AZ are

apparently characterized by an active ethylene as well as ABA

biosynthesis and signaling, although expression of far fewer

ethylene- or ABA-responsive genes was affected by late induction

compared with early induction of MFA. In particular, two

different S-adenosylmethionine synthase (SAMS) genes (SAMS1,

SAMS5), four different 1-aminocyclopropane-1 carboxylic acid

(ACC) synthase (ACS) genes (Figure S7), three different ACC

oxidase (ACO) genes (Figure S8), one ETR1 gene, one ETR2 gene,

and two diferent ERF genes (ERF, ERF11) were up-regulated

during early induction of abscission (group I, cluster B), while one

methionine synthase 2 gene, one ACS gene, two ACO gene, and

two ERF genes (ERF 6, ERF114) were up-regulated during late

induction of abscission (group I, cluster C) (Fig. 5). Thus, it seems

that ETR1, ETR2, and ERF11 are involved in early induction of

MFA, while ERF6 and ERF114 are involved in late induction of

melon MFA.

Our pyrosequencing-based approach enabled the identification

of 24 sequences that contained at minimum the AP2 domain, and

were retained for further phylogenetic analysis (Figure S9). Based

on its expression pattern, which was high in the AZ at partial cell

separation, ERF11 can be considered as a good candidate for

encoding an ERF involved in MFA regulation. By contrast, other

genes related to ethylene signaling, such as EIL2 (EIN3-like, EIL),

have recently been found to be involved in olive MFA [22], while

ETR4 and CTR1 have been demonstrated to participate in the late

stages of tomato flower abscission [23]. In this study, the up-

regulation of genes encoding ethylene biosynthesis and signaling

components prior to the complete cell separaton is consistent with

previous reports that apple-fruitlet abscission is preceded by

increased ethylene biosynthesis and sensitivity [34]. The down-

regulation of the genes related to ethylene biosynthesis and

response in the melon-AZ following abscission (Cluster A) is also

found (Fig. 5): one SAM synthase, two ACO, one ERS1, and five ERF

genes (ERF1, ERF1B, ERF, ERF/RAP2.3, ERF/AP2). Most

reported AZ ERFs have been shown to be induced with abscission,

or ethylene treatment, including from citrus ERF1 and ERF2 [27],

apple ERF [23], and tomato ERF1b, ERF1c, ERF2, and ERF3 [25].

However, the decline in melon ERF1 and ERF1B is likely to be

associated with early induction of melon MFA.

In addition, genes encoding key genes related to polyamine

biosynthesis, including ADC, NCPA, SAMDC, and SPDS, showed

temporal regulation across the samples studied (Fig. 5). The down-

regulation of one ADC1, one NCPA, and two different SPDS genes

Figure 4. Simplified schematic representation of the trafficking pathways to and from the cell wall during early (A) and late (B)
induction of melon MFA. The Rab-GTPases probably involved at each step are indicated in green (down-regulated) and red (up-regulated). 1,
Synthesis of proteins in endoplasmic reticulum (ER): EXT, EXP, EGase, PG, PE, PL, XTH, b-glucosidase, b-galactosidase, and b-1,3-glucanase during early
induction of MFA; EXT, EXP, EGase, and PE during late induction of MFA. 2, Synthesis of matrix polysaccharides and assembly of proteins in Golgi and
TGN/EE (the trans-Golgi network and early endosomal compartments). 3, Modification of wall elements by secreted enzymes. Pathways to and from
the vacuole have been omitted for simplicity. Additional information on the vesicle-trafficking-related genes is presented in Table S10. (ECM:
equivalent to the ‘‘cell wall’’ or ‘‘apoplast’’; PM: plasma membrane).
doi:10.1371/journal.pone.0058363.g004



at 38 DPA in melon-AZ agrees with results from apple during

shading-induced and NAA-induced fruit abscission [34]. Howev-

er, other PA-related genes, such as one ADC and three SAMDC,

were up-regulated following melon MFA, in agreement with data

of the ADC activity from olive during MFA [49], although in

olive, a decline of SAMDC expression was found during MFA [50].

Melon-AZ undergoes a large increase simultaneously in

ethylene- and ABA-related expression during MFA, suggesting

regulatory functions and/or interactions for these two hormones in

the melon-AZ. It has been proposed that ABA might sense

nutrient stress and thus could be correlated with the ethylene-

associated abscission activation in citrus fruitlets [51], and with

shading-induced abscission of apple fruits [34]. In our study, of the

8 differentially expressed genes involved in ABA biosynthesis, six

genes show increased transcript abundance during early induction

of melon MFA, indicating that ABA levels probably rise at 38

DPA in AZ (Fig. 6A). Furthermore, this marked up-regulation of

ABA biosynthetic genes is followed by a subsequent decline in

transcripts. At same time, an ABC transporter of the G class

transporting ABA [52], ABCG25, an ABA exporter through the

plasma membrane, is up-regulated at 38 DPA, while ABCG40, an

ABA importer, is up-regulated at 40 DPA (Figure S6), suggesting

the active control of ABA transport between AZ-cells during

melon MFA. The metabolism of ABA, therefore, clearly displayed

a coordinated transcriptional activation at abscission in the melon-

AZ.

The present analysis also found components of ABA signaling

induced during early and/or late induction of MFA. Four PP2C

(type 2C protein phosphatase), two SnRK2 (subfamily 2 of SNF1-

related kinases), and one ABF3 (AREB/ABF subfamily transcrip-

tional factor) were exclusively up-regulated during early induction,

whereas only one PP2C was exclusively up-regulated during late

induction of melon MFA (Fig. 6A). In addition, down-regulation of

ABA-related genes was found following MFA. One PYR/PYL

(ABA receptor) and one PP2C were down-regulated during early

induction, whereas four PP2C, two SnRK2 and one ABF3 were

Figure 5. Expression profiling of genes related to ethylene biosynthesis and signaling, and polyamine biosynthesis as
reconstructed from the 454 pyrosequencing transcriptome. UniProt IDs followed by asterisks indicate transcripts showing significant
variations during abscission (P,0.01, group I). Gene-expression levels at 36, 38, and 40 DAP are indicated with colored bars. For the sample displaying
maximal expression level, the normalized transcript abundance, expressed as the number of transcripts per total transcripts. For the other sample,
expression level is indicated as percentages of the maximal normalized transcript abundance of the gene, as described in the color code from 0%
(white) to 100% (dark blue). Additional information on the hormone-related genes is presented in Table S12.
doi:10.1371/journal.pone.0058363.g005



down-regulated in melon AZ during late induction of abscission.

These differences in ABA-related responses suggest that the ABA

signaling is more active in the early induction that in late induction

of melon MFA. Additionally, only one SnRK2 was strongly up-

regulated during both early and late induction of melon MFA,

indicating that this SnRK2 may be commonly needed for full

activation of AREB/ABF transcription factors (TFs) required for

complete cell separation during melon MFA.

Given the importance of auxin-mediated processes in abscission

[53], more research is needed to elucidate the mode of action of

auxin signaling in the AZ. A divergence in auxin-related gene

expression was noted for early vs. late induction of MFA. Only one

auxin-related gene (IAA2) showed up-regulation during late

Figure 6. Expression profiling of genes related to ABA (A) and auxin (B) biosynthesis and signaling in fruit-AZ during melon MFA.
UniProt IDs followed by asterisks indicate transcripts showing significant variations during abscission (P,0.01, group I). Relative expression is as in
Figure 5. Additional information on the hormone-related genes is presented in Table S13.
doi:10.1371/journal.pone.0058363.g006

Figure 7. Expression profiling of genes related to JA (A) and SA (B) metabolism and signaling in fruit-AZ during melon MFA. UniProt
IDs followed by asterisks indicate transcripts showing significant variations during abscission (P,0.01, group I). Relative expression is as in Figure 5.
Additional information on the hormone-related genes is presented in Table S14.
doi:10.1371/journal.pone.0058363.g007



induction, while 8 genes were induced during early induction of

melon MFA (Fig. 6B). The auxin-amino acid hydrolase gene,

which is involved in auxin homeostasis, was up-regulated and

down-regulated during early and late induction of MFA,

respectively. Auxin-amino acid hydrolase may provide for local

concentrations of auxin within the AZ to promote cell enlarge-

ment prior to complete cell separation. This is consistent with

other studies on abscission, in which genes encoding for protein

homologs of this family were found to be up-regulated after flower

removal [25] and NAA-induced apple fruit abscission [34].

However, transcript levels for the auxin conjugating enzymes,

GH3.5 and GH3.1 were also found to be induced during early

induction of melon MFA. Furtermore, these GH3.5 and GH3.1

genes show down-regulated expression in the melon AZ during

late induction of MFA.

Several transcripts related to auxin transport and perception

also displayed increases during early induction of melon MFA.

Earlier reports indicated that the ethylene burst preceding

abscission of apple fruitlets may be responsible for the lower

transcript level of an auxin efflux carrier PIN1 in seed, leading to a

reduced auxin export and the induction of apple fruitlets

abscission [34]. In our study, transcript levels for two auxin efflux

carriers (AEC3, AEC) lowered at the early induction of MFA,

indicanting that the decline in expression may be related to a

reduced rate of basipetal auxin transport in melon AZ, and could

signal the beginning of abscission process, which may be associated

with increases in expression of ethylene-related genes. However, a

transcript encoding auxin influx carrier-like protein 3 (AUX1/

AIC3) increased during early induction of melon MFA, suggesting

a role regulating auxin influx and maintaining auxin sink-strength

in this tissue in a similar manner to its arabidopsis and tomato

orthologs, AtLAX3 and SlLAX3, which have been shown to create

cell-specific auxin sinks [54,55]. In addition, one auxin receptor

TIR1 gene (TIR1/AFB, a nuclear receptor) was up-regulated

during early induction of MFA. Our data indicate that there are

numerous transcript responses to auxin. The three families of early

auxin responsive genes, Aux/IAA (IAA2), GH3 (GH3.5 and GH3.1),

and SAUR, which contain a binding motif to the ARF TF, were

up-regulated during early induction of melon MFA. Only an Aux/

IAA gene, IAA2, showed increased expression in melon AZ during

both the early and late induction of abscission, suggesting that

IAA2 is likely to be associated with MFA, and may be required for

complete cell separation during MFA in melon AZ. In contrast,

IAA1 and IAA2 genes were down-regulated by deblading/

decapitation in Mirabilis jalapa, demonstrating a correlation

between acquisition of competence to respond to ethylene in both

leaf and stem AZs, and a decline in the abundance of auxin

regulatory gene transcripts [25]. Additionally, we detected

numerous auxin-regulated genes belonging to the Aux/IAAs,

which were down-regulated during early induction of abscission.

In tomato flower AZ, the diminished expression of these Aux/IAA

genes is as a result of auxin depletion following flower removal,

and is neither AZ specific nor affected by ethylene [24]. In this

study, the modification of auxin sensitivity by down-regulation of

auxin response regulators, such as Aux/IAAs, can lead to MFA.

Figure 8. Expression profiling of genes related to BR (A), CK (B), and GA (C) biosynthesis and signaling in fruit-AZ during melon
MFA. UniProt IDs followed by asterisks indicate transcripts showing significant variations during abscission (P,0.01, group I). Relative expression is
as in Figure 5. Additional information on the hormone-related genes is presented in Table S14.
doi:10.1371/journal.pone.0058363.g008



Early induction of melon MFA also appeared mainly to up-

regulate expression of JA- and SA-related genes (Fig. 7). Five out of

the 7 differentially expressed genes involved in JA biosynthesis,

were up-regulated in melon AZ during early induction, as has

been described in citrus leaf abscission [27] and arabidopsis

stamen abscission [29]. Similarly, up-regulation of two JAZ genes

and one MYC2 gene occurs in melon-AZ during MFA, suggesting

an increase of JA levels and sensitivity in mediating melon MFA.

Also, several genes related to SA were up-regulated during MFA,

such as PAL, NPR1, PR-1 and PR-4. The gene-profiling data

showed that PR1 and PR4 transcripts, which are markers for the

SA response [56], were increased during early induction of melon

MFA, whereas an UDP-glucose:SA glucosyltransferase transcript, which

is involved in SA conjugation, increased during late induction of

melon MFA.

Up-regulation of BR signaling was unexpected during melon

MFA (Fig. 8A). Although BRs are essential growth regulators,

involved in many physiological processes [57], their role in

abscission regulation remains to be determined, because informa-

tion regarding the genes controlling BR signaling in AZ during

abscission is extremely limited. The present work provides the first

report available showing up-regulation of the main components of

BR signaling during abscission, with particular emphasis on early

induction of MFA. Here, we show that a BRI1 receptor kinase, 2

BAK1 co-receptors, a BSU1 phosphatase, and a BES1/BZR1 TF

(BES1/BZR1 homolog protein 4, BEH4 At1g78700) were

exclusively up-regulated during early induction of melon MFA,

while only a different receptor BRI1 gene was exclusively up-

regulated during late induction of MFA, suggesting that the up-

regulation of receptor BRI1 may be required for complete cell

separation during MFA. Thus, the temporal distribution of BRI1,

BAK1, BSU1, and BEH4 expression indicates that their coordi-

nated action regulates BR response in melon-AZ during MFA.

Recently, it has been demonstrated that PP2A (cytoplasmic

protein phosphatase 2A) is responsible for dephosphorylating

BZR1 and BZR2/BES1, thus increasing the active form of

these TFs and promoting BR signaling [58]. It bears noting that

we found the up-regulation of the expression of two PP2A genes

(PP2AA2DF1/At3g25800, PP2A5/At1g69960), and one BEH4-

like (BZR1) gene in melon-AZ at 38 DPA, suggesting that the

up-regulation of PP2A gene activates BR-responsive gene

expression in melon-AZ and MFA by dephosphorylating

BEH4. In addition to BR, recent experiments indicate that

PP2A also regulates ethylene biosynthesis by differentially

regulating the turnover of ACS isoforms [59], which suggests

that PP2A phosphatase may be involved in the abscission

process. Thus, these data imply that ethylene biosynthesis and

BR signaling converge at the transcriptional level to synergis-

tically activate melon MFA.

In the case of GA, our data suggest that GA signaling is

negatively regulated by GAI (DELLA protein) during melon MFA

(Fig. 8), a finding consistent with data from apple during

immature-fruit abscission [23] and during shading- and NAA-

induced abscission [34]. However, the up-regulation of GA

biosynthesis during melon MFA contrasts with data from apple

immature-fruit abscission [23], suggesting that a low GA level in

immature-fruit-ZA, and a high GA level in mature-fruit-ZA may

be associated with abscission. Thus, our study indicates that

besides the participation of ethylene, ABA, JA and auxin in

controlling abscission events, other hormones, such as SA and BR,

apparently participate in an intricate interaction web regulating

the early induction of melon MFA. A representative KEGG map

for plant-hormones signalings during melon MFA is given in

Figure S10.

Identifying Transcription-factors Critical for Early and Late
Induction of MFA

Of 4,801 differentially expressed genes, 123 genes putatively

encoding TFs of diverse families were differentially expressed in

the fruit-AZ (P,0.01), most of them with an up-regulation

pattern from 36 to 38 DPA (Table S15). Overall, there were 36

genes with peak read amounts within cluster A, 73 genes at 38

DAP within cluster B, and 15 genes at 40 DAP within cluster

C. Within cluster A, with peak transcription amounts at 36

DAP, the most abundant TF the most abundant TFs was a

NAC domain protein found within subcluster A3 (Table S15).

Notably, there was one AP2/ERF protein (ERF1) that was

abundant within the subcluster A2 (Table S15). Indeed, AP2/

ERF proteins were the most represented class of proteins at 36

DAP, one within subcluster A1, four within subcluster A2, and

one within subcluster A3, suggesting coordinated regulation of

this class of TFs. MADS-box proteins were the second most

represented class within the subcluster A2 (MADS2, ERAF17

and Flowering locus C/FLC). Our pyrosequencing-based

approach identified 7 sequences that contained the conserved

MADS domain, and that were retained for further phylogenetic

analysis (Figure S11). In cluster B, all transcripts for TFs were

found in subcluster B1 (Table S15), suggesting that tight

transcriptional coordination occurs at the early induction of

melon MFA. The classes that are well represented in cluster B

included 10 Zinc finger (ZF) proteins and 10 homeobox domain

proteins. Remarkably, only 15 TFs were found within cluster C,

suggesting that restricted transcriptome regulation occurs at late

induction of melon MFA (Table S15). In cluster C, 14 out of 15

genes were found within subgroup C1. The most abundant TFs

were two ZF proteins, and one AP2/ERF protein (ERF6) found

within subcluster C1 (Table S15). In addition, one auxin-

induced repressor protein (IAA2) was included in subcluster C2.

Finally, no genes for subcluster C3 were found within group I.

Thus, most members of MADS box, and Aux/IAA families

were found within cluster A, and were down-regulated genes

during melon MFA, whereas most members of ZF, WRKY,

basic lecine zipper (bZIP), and NAC families were found within

cluster B or C, and were up-regulated genes during MFA (Fig. 9,

Table S15).

When we considered all of the 2,209 induced and 2,592

repressed genes in our dataset, we obtained 94 up-regulated and

89 down-regulated TF genes during MFA in our two experiments:

67 TF genes (33%) were induced at 38 DPA, and repressed at 40

DPA (early up-regulated TFs), six (3%) were repressed at 38 DPA

and induced at 40 DPA (late up-regulated TFs), one (0.5%) was

induced at both 38 DPA and 40 DPA, and 13 (6.5%) were

repressed at both 37 DPA and 39 DPA (Table S15). Therefore,

only a few up- or down-regulated genes occurred in both early and

late induction, thereby suggesting that time-specific events occur,

and that the most genes are strongly up-regulated in fruit-AZ

during early induction of melon MFA.

Among the early up-regulated TFs, HSF proteins, CCAAT-

binding proteins, ARID protein, DRE protein, Nut2 protein, NAP

protein, BES1/BZR1 (bHLH protein, BEH4), and IWS1 protein

have not previously been ascribed functions in abscission (Table

S15). The largest early-upregulated TF families were the ZF (10

genes), homeobox (10 genes), WRKY (8 genes), and bZIP (7

genes), impliying that TFs from these families could be involved in

triggering the transcriptional cascade during MFA. However,

within the set of 107 known or predicted TFs induced or repressed

during late induction of melon MFA, we found that only 6 out of

20 genes exclusively induced at 40 DPA were repressed at 38

DPA. We believe that the 6 induced genes, one AP2/ERF



(RAP2.3), one ZF (C2H2L24), one Aux/IAA, one NAC (NAC-A/

B) and two homeobox proteins, are strong candidates for possible

roles in regulating pathways that are activated specifically during

late events of melon MFA.

Our analyses of TFs also revealed some similarities, as AP2/

ERF, MYB, ZF, WRKY, and NAC proteins, with previous studies

in immature-fruit abscission [23,53], and provide insights into the

regulatory processes that occur during MFA. In addition, this

study reveals greater resolution of these events. Thus, for cluster A,

enriched in the AP2/ERF, Aux/IAA, and MADS-box TF

families, it can be seen that these TFs are abundant at 36 DPA

in fruit-AZ, and decrease during early induction of melon MFA,

but increase, decrease, or remain largely unchanged during late

induction of MFA. By contrast, the transient cluster B is enriched

in bZIP, homeobox, WRKY, and ZF proteins, while cluster C is

enriched in the MYB family. Therefore, despite all clusters contain

members from several TF families, there is a clear and significant

difference in the proportion of families in each cluster, implying an

important time-specific regulatory requirement for the expression

of these TFs.

An equivalent analysis of the down-regulated TFs genes

identified in our two experiments, gave a very different result.

Whereas 78% (73 of 94) of the total up-regulated TFs showed

increased expression during early induction of MFA, 70% (86 of

122) of the total down-regulated TFs showed decreased

expression during late induction of MFA. These results appear

to indicate that melon MFA causes the down-regulation of

many TFs, but, in most cases, this down-regulation is not part

of the endogenous program of early changes in gene-expression

required for abscission. However, in our parallel analysis of

down-regulated genes, most members of MADS box, and Aux/

IAA families were found during early induction of MFA,

suggesting that repression of this TF expression plays a role in

early events during melon MFA. When we compared the down-

regulated TF genes during early and late induction of

abscission, we found the presence of 13 down-regulated TF,

including one Aux/IAA protein, two bHLH proteins, three

AP2/ERF proteins (ERF1, AP2D15, ERF), three MADS box

proteins (FLC, MADS2, ERAF17) proteins, one ZF protein

(SAP5), one SCL protein (SCL13) and one uncharacterized TF.

All of these were common to both times in fruit-AZ during

MFA, suggesting that there are common regulators of MFA

between early and late induction of MFA. Thus, it seems likely

that a battery of down-regulated TFs may be necessary to

coordinate cell separation during melon MFA.

Figure 9. Melon TFs induced (A) or repressed (B) in fruit-AZ during early and late induction of melon MFA. Additional information on
the TF-related genes is presented in Table S15.
doi:10.1371/journal.pone.0058363.g009



Confirmation of Gene-expression Patterns Upregulated
during Melon MFA

To verify the results of our pyro-sequencing analysis, we

performed qRT-PCR analysis of the identified AZ-enriched

genes during MFA induction (Fig. 10). The list of 47 selected

genes and their primers are shown in Table S16. Among the

abscission-associated transcripts, genes encoding key enzymes

involved in cell-wall metabolism, such as PE3 (Q43111), b-EXP1

(A1X8W4), a-EXP7 (Q8W5A6), EXP5 (Q2V728), PL (B9S561),

PG2 (O81245) and b-GALs (D7TB77, B9HDL7, Q5CCP8,

B9SWC7) were upregulated at 38 DPA and downregulated at

40 DPA in the AZ, which was identical to the RNA-seq results

(Fig. 10). Also, we validated the increased expression of genes

EXT1-EXT4 (Q38913) and EXT3-EXT5 (Q9FS16) at 38 DPA,

as well as the increased expression of gene EXT1-EXT4 at 40

DPA. Similarly, we confirmed the increased expression of genes

encoding enzymes involved in vesicle trafficking, and phytohor-

mone metabolism and signaling, such as RabA2b (Q40193),

RabB1b (P92963), RabE1c (P28186), RabD2a/ARA5 (B9MUT7),

RabF1/ARA6 (B9HUI6), one ACS (B95BC0), one ACO

(C7U1K1), ETR1 (Q9SSY6), ETR2 (A8QYK9), ERF11

(D8VD38), ADC (B3Y023), IAA2 (Q9SSY2), GH3.5 (081829),

TIR1 (B8Y9B4), ABF3 (B9RPF8), NCED (B9S0Z6), SnRK

(B9RVE0), KAT (B9RPF8), JAZ (D8V3L7), MYC2 (B9S1E9),

NPR1 (B9S3I0), PAL (B9SOK2), PR-1 (B9S7U9), BRI1

(B9RLU0), BAK1 (B9RUI5), BZR1 (Q9ZV88), and ARRB

(D7TTG7) at 38 DPA, as well as the downregulated genes

RabH1b (O80501) and one ACO (B9RYX6) at 38 DPA in the

AZ (Fig. 10). The expression level of one ACS (Q9LN15), one

ACO (B9RKA0), and IAA2 increased at 40 DPA, which was

consistent with RNA-seq results. On the other hand, our results

revealed downregulation of a ZF gene, SAP5, during MFA

induction, which was identical to the RNA-seq results (Fig. 10).

Thus, the qRT-PCR results were consistent with the pyro-

sequencing data, indicating that the pyro-sequencing analysis

results were effective.

In addition, we tested tissue specificity of these genes using

qRT-PCR, which confirmed its enrichment in the AZ. We

demonstrate that the expression pattern in the AZ of some genes

performed by qRT-PCR is different from the pattern of expression

in adjacent non-AZ tissues (pedicel or fruit mesocarp) (Fig. 10). In

fact, most of the transcripts accumulated higher in the AZ,

suggesting the involvement of these genes in abscission events.

In conclusion, this analysis provides novel information for the

potential candidate genes and pathways associated with early

induction of MFA in fleshy-fruit. At early induction of melon

MFA, activated genes are related to cell-wall metabolism,

endomembrane trafficking, protein phosphorylation, plant-hor-

mone biosynthesis and signaling, and ion fluxes. Early events are

potentially controlled by down-regulation of MADS-box, AP2/

ERF and Aux/IAA TFs, and up-regulation of bZIP, homeobox,

ZF, and WRKY TFs, while late events may be controlled mostly

by up-regulation of MYB TFs during melon MFA induction.

Among the early-induced TFs, HSF proteins, CCAAT-binding

proteins, ARID protein, DRE protein, Nut2 protein, NAP protein,

BES1/BZR1 (bHLH protein, BEH4), and IWS1 protein have not

previously been ascribed functions in abscission. At present, little is

known about potential AZ genes regulating MFA in fleshy-fruit.

Therefore, our comprehensive gene expression profile will be very

useful for elucidating gene regulatory networks of the MFA in

fleshy-fruit.

Materials and Methods

Plant Material and RNA Isolation
Charentais melon (C. melo var. cantalupensis Naud, ‘Vedran-

tais’) flowers were tagged on the day of pollination, and the fruit-

AZ samples were collected from melon fruits subsequently

harvested at specified stages of MFA induction: 36 DPA, fruit-

AZ pre-cell separation; 38 DPA, fruit-AZ partial cell separation;

and 40 DPA, almost complete fruit-AZ cell separation and cell

collapse (Fig. 1). Védrantais fruit abscission was observed at 42

DPA. The fruit-AZs, located between the pedicel and fruit

(Fig. 1B), were collected from longitudinal sections by cutting

1 mm on the proximal and distal sides of the abscission fracture

plane (Fig. 1C). Fig. 1D shows the tissue samples used in this study

(white box). Fruit-AZ wings containing mesocarp or pedicel/calyx-

like tissues were discarded. Thus, the possible contamination was

reduced to a minimum level and, therefore, the data reported

concern the AZ and not the fruit. Freshly excised AZ samples were

immediately frozen in liquid nitrogen and stored at 280uC for

RNA isolation. To examine the proximal and distal fracture planes

of the fruit-AZ by scanning electron microscopy (SEM), following

critical-point drying, tissues were mounted onto steel stubs, coated

with gold-palladium, and observed using a LEO 1430 VP

scanning electron microscope [49].

Total RNA was extracted from AZ tissues using Trizol

(Invitrogen Life Technologies). RNA quality was gel verified and

quantified spectrophotometrically (NanoDrop, ThermoScientific,

http://www.thermofisher.com/). Messenger RNA was isolated

twice with Dynabeads Oligo (dT)25 (Dynal Biotech ASA, Dynal

Invitrogen, http://www.invitrogen.com) to minimize rRNA

contamination. One microgram of mRNA per sample was used

as a template for first-strand cDNA synthesis using SMART

technology (Clontech Laboratories Inc, http://www.clontech.

com/) to favour full-length synthesis. Double-stranded cDNA

was made by 13 cycles of long-distance PCR. Complementary

DNA was purified with QIAquick columns (Qiagen, http://www.

qiagen.com/) to eliminate oligo dT and enzymes. The cDNA

quality was verified with an Agilent 2100 Bioanalyzer (Nimblegen,

http://www.nimblegen.com/).

Library Preparation for Pyro-sequencing
Three micrograms of each cDNA sample were nebulized to

produce fragments of a mean size between 400 and 800 bp.

Preparation of cDNA fragment libraries and emulsion PCR

conditions were performed as described in the Roche GS FLX

manual. Pyro-sequencing was performed on a Roche Genome

Sequencer FLX instrument (454 Life Science Roche Diagnostics,

http://www.454.com/) at Lifesequencing S.L. (Valencia, Spain).

Trimming and Assembly of Pyro-sequenced Reads
The quality of the reads was assessed with PERL scripts

developed at Lifesequencing for trimming and validation of high-

quality sequences. Adaptor sequences used for library preparation

were entered in an adaptor-trimming database to the PERL

Program. New SFF output files were generated with the sfftools

(454 Life Science/Roche), keeping the largest starting trimpoint

and the smallest ending trimpoint. Trimmed reads were assembled

with NEWBLER version 2.3 (454 Life Science/Roche) with

default parameters. Following quality control, when performing

the assembly, some reads were removed due to short quality for

the reads to be used.



Figure 10. Confirmation of gene-expression patterns up or downregulated during melon MFA. qRT-PCR analysis of 47 selected genes in
various melon tissues at 36, 38 and 40 DPA: AZ (-D-), pedicel (proximal non-AZ, -%-) and fruit mesocarp (distal non-AZ, -O-). Analysis of transcript
levels of genes by quantitative RT-PCR. Genes and their primers are shown in Table S16. Relative expression values were normalized to the lowest
expression value taken as 1. The data represent the mean values (6SEs) of duplicate experiments from three independent biological samples. Broken
lines (–m–) show expression profiling of genes in the melon AZ as reconstructed from the 454 pyrosequencing transcriptome. Broken line indicates
the total read count in RPKMx1000 for each gene after normalization across the samples: AZ at 36, 38 and 40 DPA.
doi:10.1371/journal.pone.0058363.g010



Annotation
We selected a wide set of reference proteins from taxonomically

related organisms. In addition, we included all proteins form

eudicotyledons with annotations for the terms: carbohydrate meta-

bolic process, secondary metabolic process, cell-wall, cell-wall

organization, and phytohormones, in order to have a complete

reference protein representation for these specific aspects probably

related with abscission process. The total number of reference

proteins was 125,428. The inclusion of proteins from taxonom-

ically distant organisms with rich functional annotations such as

Vitis vinifera or Ricinus communis, allowed us to annotate new proteins

that could be lost if we include proteins only from close organisms.

To obtain a high quality annotation we chose a very restrictive

level of similarity between the isotig and the annotator reference

protein. The similarity required must be high to sufficiently

support the inference of function from the reference protein. In

this work, BLAST E value lower than 10220 was required for

function inference. It is important to note that the smaller the E

value is, the higher similarity between sequences is, and thus, the

greater the confidence of the function assignment is. The massive

BLASTX of all isotigs against the 125,428 reference proteins was

performed using a cloud computing environment (Amazon web

services).

Quantification of the Expression Levels
The reference proteins were proteins representative of Uni-

Ref90 clusters. This strategy fixed a minimum similarity distance

between reference proteins and was the basis of our clustering of

isotigs for obtaining unigenes and quantifying their expression

levels. The name of each unigene was inferred from the name of

the UniRef90 representative proteins that annotated each unigene.

We quantified the expression for these unigenes, here defined as

clusters of isotigs annotated by the same reference protein. The

number of reads assigned to each isotig was calculated taking into

account that the reads of each contig were counted only one time.

Given that isotigs represent transcribed isoforms, it could be

possible that different isotigs sharing some contigs were clustered

within the same unigene. In those cases, the reads of each contig

was counted only one time. The normalization of the absolute

values of the number of reads was done based on [60]. We

obtained the RPKM (Reads Per Kilobase of exon model per

Million mapped reads). In this case we used the length of the

reference protein in nucleotides since we were working without a

reference genome and then without exon models. This normal-

ization allows the comparison of the expression values between

unigenes from the same or from different samples [60].

Differential Expression Analysis
The method used for the analysis of differential expression in

this work was edgeR [61], a Bioconductor package for differential

expression analysis of digital gene-expression data able to account

for biological variability. EdgeR models count data using on

overdispersed Poisson model, and use an empirical Bayes

procedure to moderate the degree of over-dispersion across genes.

For the analysis of the differential expression with Edge R the

input was a table of counts, with rows corresponding to genes/

proteins and columns to samples. EdgeR models the data as

negative binomial (NB) distributed, Ygi,NB(Mipgj, Fg) for gene g

and sample i. Here Mi is the library size (total number of reads), Fg

is the dispersion, and pgj is the relative abundance of gene g in

experimental group j to which sample i belongs. The NB

distribution reduces to Poisson when Fg = 0. This is an especially

appropriate method to be used in RNA-Seq projects [62,63].

In this work an isotig was considered differentially expressed

during abscission when at stage transition it exhibited highly

significant difference in read abundance at P,0.01.

GO Annotations
GO annotations [64] were obtained from Uniprot and inferred

from the GO annotations of the proteins representative of each

unigene. GO Terms coming from the 3 different GO ontologies

(Biological process, Molecular function and Cellular component)

were analyzed separately. We found the number of proteins

annotated with each term. In the GOSlim analysis, every GO

term was translated into a GO Term taken from a set of selected

general GO Terms in order to provide a more general and

homogeneous perspective of the GO Terms found in a sample. To

perform the GOSlim analysis, we selected the GOSlim terms

proposed by the European Institute of Bioinformatics (EBI) as GO

Terms selected for studies in Plants. The GO-slim studies were

developed using Bio4j (http://www.bio4j.com/), a graph database

that integrates all Uniprot, GO, taxonomy, RefSeq and Enzyme

database elements in nodes connected by edges that represent

their relationships. We selected a subset of terms to gain a broad

functional overview and, using bio4j at the back-end, we obtained

the GO-slim results. At this selected granularity level we obtained

the functional profile of GO-slim terms that allowed us to highlight

general features.

Hierarchical clustering analysis was used to group contigs

according to their transcription profile using the tool developed by

[65, http://rana.lbl.gov/eisen/].

Phylogenetic Analysis
Phylogenetic trees were constructed based on similarity searches

performed with BLASTp programs with default parameters in

protein-sequence databases provided by the National Center for

Biotechnology Information server (http://www.ncbi.nlm.nih.gov).

Amino-acid sequences were aligned with ClustalW (version 2.0.3)

[66].

Sequence Deposition
The complete set of 454 sequences will be deposited at

GenBank upon publication. The dataset can also be obtained

from the authors via FTP upon request.

Quantitative RT-PCR
Total RNA (2 mg) was reverse-transcribed with random

hexamers and Superscript III (Invitrogen), according to the

manufacturer’s instructions. Purified cDNA (2 ng) was used as a

template for qRTPCR. qRT-PCR assays were performed with

gene-specific primers. Genes and their primers are shown in Table

S16. The cDNA was amplified using SYBRGreen-PCR Master kit

(Applied Biosystems, Foster City, CA, USA) containing an

AmpliTaq Gold polymerase on an iCycler (BioRad Munich,

Germany), following the protocol provided by the supplier.

Samples were subjected to thermal cycling conditions of DNA

polymerase activation at 94uC, 45 s at 55uC, 45 s at 72uC, and

45 s at 80 uC; a final elongation step of 7 min at 72uC was

performed. The melting curve was designed to increase 0.5uC
every 10 s from 62uC. The amplicon was analysed by electropho-

resis and sequenced once for identity confirmation. qRT-PCR

efficiency was estimated via a calibration dilution curve and slope

calculation. Expression levels were determined as the number of

cycles needed for the amplification to reach a threshold fixed in

the exponential phase of the PCR (CT). The data were normalized



for the quantity of melon ubiquitin gene. Duplicates from three

biological replicates were used in two independent experiments.

Supporting Information

Figure S1 Summary of different parameters during the

sequencing and assembly data of the study of the melon AZ

transcriptome at 36, 38, and 40 DPA to allow insight into the

transcriptional events that underlie fruit-AZ function during MFA.

A, Read length distribution. A total of 483,704 good-quality

sequence reads (134,158,280 bp) were obtained from the 3

samples (fruit-AZ at 36, 38 and 40 DPA). B, Contig length

distribution. A total of 14,162 contigs were obtained from the

Newbler assembly of the 483704 redundant reads. The average

contig length is around 500 bases. C, Contig read total distribution

from fruit-AZ 454 sequencing data. The majority of the contigs

consisted of less than 10 reads. D, Isotigs length distribution.

12,871 isotigs were obtained after Newbler gene modeling.

(TIFF)

Figure S2 Nine clusters representing expression signatures in the

three stages of melon AZ (36, 38, and 40 DPA). Clusters A1, A2,

and A3 contained the 524, 182, and 89 most abundant transcripts

in the pre-cell separation sample only, respectively. Cluster B1

includes the 1,219 most abundant transcripts in the partial cell

separation sample (38 DPA, early induction of abscission)

exclusively. The smaller cluster B2 included the most abundant

transcripts in both the early and late induction of abscission

samples (38 and 40 DPA). The cluster B3 contained 7 transcripts

more abundant in both the pre-cell and partial cell separation

samples, and the transcripts with lower expression levels in almost

complete cell separation sample (40 DPA, late induction of

abscission). Cluster C1 included the 407 most abundant transcripts

in the almost complete cell-separation sample (40 DPA, late

induction of abscission) exclusively. Cluster C2 and C3 contained

the 93 and 37 most abundant transcripts in the almost complete

cell separation sample, respectively, but in C2 the transcript levels

also rose in the partial cell-separation sample relative to the pre-

cell separation sample, whereas in C3 levels fell in the partial cell-

separation sample relative to the pre-cell separation sample.

(TIFF)

Figure S3 Enriched gene ontology (GO) terms during early (A)

and late (B) induction of melon MFA for UniProt IDs under

biological processes. Enrichment analysis included: 1,790 tran-

scripts with increased transcript accumulation (orange bars), and

899 transcripts with decreased transcript accumulation (green

bars) during early induction of MFA; and 802 transcripts with

increased transcript accumulation (orange bars), and 1,310

transcripts with decreased transcript accumulation (green bars)

during late induction of MFA.

(TIFF)

Figure S4 Enriched gene ontology (GO) terms during early (A)

and late (B) induction of melon MFA for UniProt IDs under

metabolic functions. Enrichment analysis included: 1,790 tran-

scripts with increased transcript accumulation (orange bars), and

899 transcripts with decreased transcript accumulation (green

bars) during early induction of MFA; and 802 transcripts with

increased transcript accumulation (orange bars), and 1,310

transcripts with decreased transcript accumulation (green bars)

during late induction of MFA.

(TIFF)

Figure S5 Enriched gene ontology (GO) terms during early (A)

and late (B) induction of mature-fruit abscission in melon for

UniProt IDs under cellular compartments. Enrichment analysis

included: 1,790 transcripts with increased transcript accumulation

(orange bars), and 899 transcripts with decreased transcript

accumulation (green bars) during early induction of MFA; and

802 transcripts with increased transcript accumulation (orange

bars), and 1,310 transcripts with decreased transcript accumula-

tion (green bars) during late induction of MFA.

(TIFF)

Figure S6 Expression profile of family genes encoding various

transport proteins during melon MFA. Sequences were selected

after establishing a P,0.01 (group I). Relative expression is as in

Figure 3.

(TIFF)

Figure S7 Phylogenetic analysis of melon ACS with other ACS

genes. The sequences included in this alignment are from melon

(Cucurbit Genomics Database; http://www.icugi.org/cgi-bin/

ICuGI/EST/home.cgi?organism = melon), and arabidopsis

(http://www.arabidopsis.org/). The ACS proteins studied from

our work are enclosed in an open box. The UniProt IDs followed

by asterisks indicate transcripts showing significant variations

during abscission (group I). Relative expression is as in Figure 3.

(TIF)

Figure S8 Phylogenetic analysis of melon ACO with other ACO

genes. The sequences included in this alignment are from melon

(Cucurbit Genomics Database; http://www.icugi.org/cgi-bin/

ICuGI/EST/home.cgi?organism = melon), and arabidopsis

(http://www.arabidopsis.org/). The ACO proteins studied from

our work are enclosed in an open box. The UniProt IDs followed

by asterisks indicate transcripts showing significant variations

during abscission (group I). Relative expression is as in Figure 3.

(TIF)

Figure S9 Phylogenetic analysis of melon ERF with other AP2/

ERF genes. The sequences included in this alignment are from our

work. Relative expression is as in Figure 3.

(TIFF)

Figure S10 Metabolic map of phytohormone signal transduction

pathways in melon-fruit AZ. Relative expression is as in Figure 3.

(TIF)

Figure S11 Phylogenetic analysis of melon MADS box with

other MADS genes. The sequences included in this alignment are

from our work, and arabidopsis (http://www.arabidopsis.org/).

The UniProt IDs followed by asterisks indicate transcripts showing

significant variations during abscission (group I). Relative

expression is as in Figure 3.

(TIFF)

Table S1 Genes up-regulated during early induction of MFA in

the first experiment.

(XLS)

Table S2 Genes down-regulated during early induction of MFA

in the first experiment.

(XLS)

Table S3 Genes up-regulated during late induction of MFA in

the second experiment.

(XLS)

Table S4 Genes down-regulated during late induction of MFA

in the second experiment.

(XLS)

Table S5 Genes up-regulated during MFA in both the first and

second experiments (early and late induction of melon MFA).

(XLS)



Table S6 Genes down-regulated during MFA in both the first

and second experiments (early and late induction of melon

MFA).

(XLS)

Table S7 Most abundant transcripts in fruit-AZ during melon

MFA. Sequences were selected after establishing a P,0.01.The

table shows the total read count in RPKMx1000 for each gene

after normalization across the 3 samples: (a) AZ pre-cell separation

(36 DPA), (b) AZ partial cell separation (38 DPA, early induction

of abscission), (c) almost complete cell separation (40 DPA, late

induction of abscission).

(DOC)

Table S8 Cell-wall-related genes induced or repressed in fruit-

AZ at 38 DPA relative to 36 DPA during early induction of melon

MFA. Sequences were selected after establishing a P,0.01.The

table shows the total read count in RPKMx1000 for each gene

after normalization across the 3 samples: (a) AZ pre-cell separation

(36 DPA), (b) AZ partial-cell separation (38 DPA), (c) almost

complete-cell separation (40 DPA).

(DOC)

Table S9 Cell-wall-related genes induced or repressed in fruit-

AZ at 40 DPA relative to 38 DPA during late induction of melon

MFA. Sequences were selected after establishing a P,0.01.The

table shows the total read count in RPKMx1000 for each gene

after normalization across the 3 samples: (a) AZ pre-cell separation

(36 DPA), (b) AZ partial-cell separation (38 DPA), (c) almost

complete-cell separation (40 DPA).

(DOC)

Table S10 Vesicle-trafficking-related genes repressed or induced

in fruit-AZ during melon MFA. Sequences were selected after

establishing a P,0.01. The table shows the total read count in

RPKMx1000 for each gene after normalization across the 3

samples: (a) AZ pre-cell separation (36 DPA), (b) AZ partial cell

separation (38 DPA, early induction of abscission), (c) almost

complete cell separation (40 DPA, late induction of abscission).

The vesicle-trafficking-related genes showed in Figure 4 are

indicated in bold.

(DOC)

Table S11 Protein-phosphorylation-associated genes induced or

repressed in fruit-AZ during melon MFA. Sequences were selected

after establishing a P,0.01.The table shows the total read count in

RPKMx1000 for each gene after normalization across the 3

samples: (a) AZ pre-cell separation (36 DPA), (b) AZ partial-cell

separation (38 DPA), (c) almost complete-cell separation (40 DPA).

(DOC)

Table S12 Ethylene- and polyamine-related genes induced or

repressed in fruit-AZ during melon MFA. Sequences were selected

after establishing a P,0.01.The table shows the total read count in

RPKMx1000 for each gene after normalization across the 3

samples: (a) AZ pre-cell separation (36 DPA), (b) AZ partial-cell

separation (38 DPA), (c) almost complete-cell separation (40 DPA).

(DOC)

Table S13 Auxin- and ABA-related genes induced or repressed

in fruit-AZ during melon MFA. Sequences were selected after

establishing a P,0.01.The table shows the total read count in

RPKMx1000 for each gene after normalization across the 3

samples: (a) AZ pre-cell separation (36 DPA), (b) AZ partial-cell

separation (38 DPA), (c) almost complete-cell separation (40 DPA).

(DOC)

Table S14 GA-, BR-, CK-, JA- and SA-related genes induced or

repressed in fruit-AZ during melon MFA. Sequences were selected

after establishing a P,0.01.The table shows the total read count in

RPKMx1000 for each gene after normalization across the 3

samples: (a) AZ pre-cell separation (36 DPA), (b) AZ partial-cell

separation (38 DPA), (c) almost complete-cell separation (40 DPA).

(DOC)

Table S15 Transcription factor genes induced or repressed in

fruit-AZ during melon MFA. Sequences were selected after

establishing a P,0.01.The table shows the total read count in

RPKMx1000 for each gene after normalization across the 3

samples: (a) AZ pre-cell separation (36 DPA), (b) AZ partial-cell

separation (38 DPA), (c) almost complete-cell separation (40 DPA).

(DOC)

Table S16 PCR-primers used in this study.

(DOC)
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4. Deleu W, Esteras C, Roig C, González-To M, Fernández-Silva I, et al. (2009) A

set of EST-SNPs for map saturation and cultivar identification in melon. BMC

Plant Biol 9: 90.

5. Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, et al. (2010) A

genetic map of melon highly enriched with fruit quality QTL and EST markers,
including sugar and carotenoid metabolism genes. Theor Appl Genet 121: 511–

533.

6. van Leeuwen H, Monfort A, Zhang HB, Puigdomènech P (2003) Identification
and characterization of a melon genomic region containing a resistance gene

cluster from a constructed BAC library. Microlinearity between Cucumis melo and
Arabidopsis thaliana. Plant Mol Biol 51: 703–718.
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