1,160 research outputs found

    Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales

    Full text link
    The first three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k2.8k^{-2.8} as observed in \emph{in situ} spacecraft measurements of the "dissipation range" of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic \Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at sub-ion-Larmor radius scales, which provides the first evidence of the ion entropy cascade in an electromagnetic turbulence simulation.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    A Precision Angle Sensor using an Optical Lever inside a Sagnac Interferometer

    Full text link
    We built an ultra low noise angle sensor by combining a folded optical lever and a Sagnac interferometer. The instrument has a measured noise floor of 1.3 prad / Hz^(1/2) at 2.4 kHz. We achieve this record angle sensitivity using a proof-of-concept apparatus with a conservative N=11 bounces in the optical lever. This technique could be extended to reach sub-picoradian / Hz^(1/2) sensitivities with an optimized design.Comment: 3 pages, 4 figure

    An evaluation of possible mechanisms for anomalous resistivity in the solar corona

    Full text link
    A wide variety of transient events in the solar corona seem to require explanations that invoke fast reconnection. Theoretical models explaining fast reconnection often rely on enhanced resistivity. We start with data derived from observed reconnection rates in solar flares and seek to reconcile them with the chaos-induced resistivity model of Numata & Yoshida (2002) and with resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find that the resistivities arising from either of these mechanisms, when localized over lengthscales of the order of an ion skin depth, are capable of explaining the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic

    Report on the first round of the Mock LISA Data Challenges

    Get PDF
    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine data sets containing simulated gravitational wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. Here we describe the challenges, summarise the results, and provide a first critical assessment of the entries.Comment: Proceedings report from GWDAW 11. Added author, added reference, clarified some text, removed typos. Results unchanged; Removed author, minor edits, reflects submitted versio

    Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer

    Full text link
    Nanotube patterning may occur naturally upon the spontaneous self-assembly of biomolecules onto the surface of single-walled carbon nanotubes (SWNTs). It results in periodically alternating bands of surface properties, ranging from relatively hydrophilic to hydrophobic, along the axis of the nanotube. Single Chain Mean Field (SCMF) theory has been used to estimate the free energy of systems in which a surface patterned nanotube penetrates a phospholipid bilayer. In contrast to un-patterned nanotubes with uniform surface properties, certain patterned nanotubes have been identified that display a relatively low and approximately constant system free energy (10 kT) as the nanotube traverses through the bilayer. These observations support the hypothesis that the spontaneous self-assembly of bio-molecules on the surface of SWNTs may facilitate nanotube transduction through cell membranes.Comment: Published in ACS Nano http://pubs.acs.org/doi/abs/10.1021/nn102763

    Long-distance remote comparison of ultrastable optical frequencies with 1e-15 instability in fractions of a second

    Full text link
    We demonstrate a fully optical, long-distance remote comparison of independent ultrastable optical frequencies reaching a short term stability that is superior to any reported remote comparison of optical frequencies. We use two ultrastable lasers, which are separated by a geographical distance of more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a commercial telecommunication network. The remote characterization spans more than one optical octave and reaches a fractional frequency instability between the independent ultrastable laser systems of 3e-15 in 0.1 s. The achieved performance at 100 ms represents an improvement by one order of magnitude to any previously reported remote comparison of optical frequencies and enables future remote dissemination of the stability of 100 mHz linewidth lasers within seconds.Comment: 7 pages, 4 figure

    Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection

    Full text link
    We have measured the mechanical loss of a dielectric multilayer reflective coating (ion-beam sputtered SiO2_2 and Ta2_2O5_5) in cooled mirrors. The loss was nearly independent of the temperature (4 K \sim 300 K), frequency, optical loss, and stress caused by the coating, and the details of the manufacturing processes. The loss angle was (46)×104(4 \sim 6) \times 10^{-4}. The temperature independence of this loss implies that the amplitude of the coating thermal noise, which is a severe limit in any precise measurement, is proportional to the square root of the temperature. Sapphire mirrors at 20 K satisfy the requirement concerning the thermal noise of even future interferometric gravitational wave detector projects on the ground, for example, LCGT.Comment: 8 pages, 6 figures, 3 tables : accepted version (by Physical Review D

    Making optical atomic clocks more stable with 101610^{-16} level laser stabilization

    Full text link
    The superb precision of an atomic clock is derived from its stability. Atomic clocks based on optical (rather than microwave) frequencies are attractive because of their potential for high stability, which scales with operational frequency. Nevertheless, optical clocks have not yet realized this vast potential, due in large part to limitations of the laser used to excite the atomic resonance. To address this problem, we demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of 2×10162 \times 10^{-16}. We use this laser as a stable optical source in a Yb optical lattice clock to resolve an ultranarrow 1 Hz transition linewidth. With the stable laser source and the signal to noise ratio (S/N) afforded by the Yb optical clock, we dramatically reduce key stability limitations of the clock, and make measurements consistent with a clock instability of 5×1016/τ5 \times 10^{-16} / \sqrt{\tau}

    Nature of Phase Transitions of Superconducting Wire Networks in a Magnetic Field

    Full text link
    We study II-VV characteristics of periodic square Nb wire networks as a function of temperature in a transverse magnetic field, with a focus on three fillings 2/5, 1/2, and 0.618 that represent very different levels of incommensurability. For all three fillings, a scaling behavior of II-VV characteristics is found, suggesting a finite temperature continuous superconducting phase transition. The low-temperature II-VV characteristics are found to have an exponential form, indicative of the domain-wall excitations.Comment: 5 pages, also available at http://www.neci.nj.nec.com/homepages/tang.htm
    corecore