261 research outputs found

    Ice Algae-Produced Carbon Is Critical for Overwintering of Antarctic Krill Euphausia superba

    Get PDF
    Antarctic krill Euphausia superba (“krill”) constitute a fundamental food source for Antarctic seabirds and mammals, and a globally important fisheries resource. The future resilience of krill to climate change depends critically on the winter survival of young krill. To survive periods of extremely low production by pelagic algae during winter, krill are assumed to rely partly on carbon produced by ice algae. The true dependency on ice algae-produced carbon, however, is so far unquantified. This confounds predictions on the future resilience of krill stocks to sea ice decline. Fatty acid (FA) analysis, bulk stable isotope analysis (BSIA), and compound-specific stable isotope analysis (CSIA) of diatom- and dinoflagellate-associated marker FAs were applied to quantify the dependency of overwintering larval, juvenile, and adult krill on ice algae-produced carbon (αIce) during winter 2013 in the Weddell-Scotia Confluence Zone. Our results demonstrate that the majority of the carbon uptake of the overwintering larval and juvenile krill originated from ice algae (up to 88% of the carbon budget), and that the dependency on ice algal carbon decreased with ontogeny, reaching <56% of the carbon budget in adults. Spatio-temporal variability in the utilization of ice algal carbon was more pronounced in larvae and juvenile krill than in adults. Differences between αIce estimates derived from short- vs. long-term FA-specific isotopic compositions suggested that ice algae-produced carbon gained importance as the winter progressed, and might become critical at the late winter-spring transition, before the phytoplankton bloom commences. Where the sea ice season shortens, reduced availability of ice algae might possibly not be compensated by surplus phytoplankton production during wintertime. Hence, sea ice decline could seriously endanger the winter survival of recruits, and subsequently overall biomass of krill

    Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets

    Get PDF
    Loss-of-function mutations in GLI3 and IHH cause craniosynostois and reduced osteogeneiss, respectively. In this study, we show that ihh ligand, the receptor Ptch1 and Gli transcription factors are differentialyy expressed in embryonic mouse calvaria osteogenic condenstions. We show that in both ihh(-/-) and Gli3(Xt-J/Xt-J) embroyonic mice, the normal gene expression architecture is lost and this results in disorganized calvarial bone developement. RUNX2 is a master regulatory transciption factor controlling osteogenesis. In the absence of Gli3, RUNX2 isoform II and IHH are upregulated, and RUNX2 isoform I downregulated. This is consistent with the expandeed and aberant osteogenesis observed in Gli3Xt-J/Xt-J mice, and consistent RunX2-t expression by relatively immature osteoprogenitors. ihh-/- mice exhibited small calvarial bones HH target genes, Ptch1 and Gli1, were absent. This indicates that IHH is the functional HH ligand, and that it is not compensated by another HH ligand. To decipher the roles and potential interaction of Gli3 and ihh. we generated ihh-/-; gli3Xt-J/Xt-J compound mutant mice. Even in the absence of ihh, Gli3 deletion was sufficient to induce aberrant precocious ossification across the developing suture, indicating that the carniosyostosis pehnotype of Gli3Xt-J/Xt-J mice is not dependent on IHH ligand. Also we found that ihh was not required for Runx2 expression as the expression of RUNX2 target genes was unaffected by deletion of Ihh. To test whether RUNX2 has a role upstream of IHH we performed RUNX2 siRNA knock down experiements in WT calvarial osteoblasts and explants and found that Ihh expression is suppressed. Our results show that IHH is the functional HH ligand in the embroynic mouse calvaria osteogenic condensations, where it regulates the progression of osteoblastic differentation. As GLI3 represses the expression of Runx2-II abd Ihh, and also elevats the Runx2-I expression, and as IHH may be regulated by RUNX2 these results raise the possibility of a regualtory feedback circuit to control calvarial osteogenesis and suture patency. Taken together RUNX2-controlled osteoblastic cell fate is regulated by IHH through concomitant inhibition of GLI3-repressor formation and activation of downstreams targets.Peer reviewe

    The skeletal phenotype of chondroadherin deficient mice

    Get PDF
    Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their a2b1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the a1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth

    Mutations in fam20b and xylt1 Reveal That Cartilage Matrix Controls Timing of Endochondral Ossification by Inhibiting Chondrocyte Maturation

    Get PDF
    Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed “maturation,” when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development

    Modelling neurofibromatosis type 1 tibial dysplasia and its treatment with lovastatin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bowing and/or pseudarthrosis of the tibia is a known severe complication of neurofibromatosis type 1 (NF1). Mice with conditionally inactivated neurofibromin (Nf1) in the developing limbs and cranium (Nf1Prx1) show bowing of the tibia caused by decreased bone mineralisation and increased bone vascularisation. However, in contrast to NF1 patients, spontaneous fractures do not occur in Nf1Prx1 mice probably due to the relatively low mechanical load. We studied bone healing in a cortical bone injury model in Nf1Prx1 mice as a model for NF1-associated bone disease. Taking advantage of this experimental model we explore effects of systemically applied lovastatin, a cholesterol-lowering drug, on the Nf1 deficient bone repair.</p> <p>Methods</p> <p>Cortical injury was induced bilaterally in the <it>tuberositas tibiae </it>in Nf1Prx1 mutant mice and littermate controls according to a method described previously. Paraffin as well as methacrylate sections were analysed from each animal. We divided 24 sex-matched mutant mice into a lovastatin-treated and an untreated group. The lovastatin-treated mice received 0.15 mg activated lovastatin by daily gavage. The bone repair process was analysed at three consecutive time points post injury, using histological methods, micro computed tomography measurements and <it>in situ </it>hybridisation. At each experimental time point, three lovastatin-treated mutant mice, three untreated mutant mice and three untreated control mice were analysed. The animal group humanely killed on day 14 post injury was expanded to six treated and six untreated mutant mice as well as six control mice.</p> <p>Results</p> <p>Bone injury repair is a complex process, which requires the concerted effort of numerous cell types. It is initiated by an inflammatory response, which stimulates fibroblasts from the surrounding connective tissue to proliferate and fill in the injury site with a provisional extracellular matrix. In parallel, mesenchymal progenitor cells from the periost are recruited into the injury site to become osteoblasts. In Nf1Prx1 mice bone repair is delayed and characterised by the excessive formation and the persistence of fibro-cartilaginous tissue and impaired extracellular matrix mineralisation. Correspondingly, expression of Runx2 is downregulated. High-dose systemic lovastatin treatment restores Runx2 expression and accelerates new bone formation, thus improving cortical bone repair in Nf1Prx1 tibia. The bone anabolic effects correlate with a reduction of the mitogen activated protein kinase pathway hyper-activation in Nf1-deficient cells.</p> <p>Conclusion</p> <p>Our data suggest the potential usefulness of lovastatin, a drug approved by the US Food and Drug Administration in 1987 for the treatment of hypercholesteraemia, in the treatment of Nf1-related fracture healing abnormalities. The experimental model presented here constitutes a valuable tool for the pre-clinical stage testing of candidate drugs, targeting Nf1-associated bone dysplasia.</p

    Relating the Chondrocyte Gene Network to Growth Plate Morphology: From Genes to Phenotype

    Get PDF
    During endochondral ossification, chondrocyte growth and differentiation is controlled by many local signalling pathways. Due to crosstalks and feedback mechanisms, these interwoven pathways display a network like structure. In this study, a large-scale literature based logical model of the growth plate network was developed. The network is able to capture the different states (resting, proliferating and hypertrophic) that chondrocytes go through as they progress within the growth plate. In a first corroboration step, the effect of mutations in various signalling pathways of the growth plate network was investigated
    • …
    corecore