139 research outputs found

    Encode a letter and get its location for free? Assessing incidental binding of verbal and spatial features

    Get PDF
    Previous studies have demonstrated that when presented with a display of spatially arranged letters, participants seem to remember the letters’ locations when letters are the focus of a recognition test, but do not remember letters’ identity when locations are tested. This strong binding asymmetry suggests that encoding location may be obligatory when remembering letters, which requires explanation within theories of working memory. We report two studies in which participants focused either on remembering letters or locations for a short interval. At test, positive probes were either intact letter–location combinations or recombinations of an observed letter and another previously occupied location. Incidental binding is observed when intact probes are recognized more accurately or faster than recombined probes. Here, however, we observed no evidence of incidental binding of location to letter in either experiment, neither under conditions where participants focused on one feature exclusively for a block, nor where the to-be-remembered feature was revealed prior to encoding with a changing pre-cue, nor where the to-be-remembered feature was retro-cued and therefore unknown during encoding. Our results call into question the robustness of a strong, consistent binding asymmetry. They suggest that while incidental location-to-letter binding may sometimes occur, it is not obligatory

    Tilting a ground-state reactivity landscape by vibrational strong coupling

    Get PDF
    Many chemical methods have been developed to favor a particular product in transformations of compounds that have two or more reactive sites. We explored a different approach to site selectivity using vibrational strong coupling (VSC) between a reactant and the vacuum field of a microfluidic optical cavity. Specifically, we studied the reactivity of a compound bearing two possible silyl bond cleavage sites—Si–C and Si–O, respectively—as a function of VSC of three distinct vibrational modes in the dark. The results show that VSC can indeed tilt the reactivity landscape to favor one product over the other. Thermodynamic parameters reveal the presence of a large activation barrier and substantial changes to the activation entropy, confirming the modified chemical landscape under strong coupling

    Multilab Direct Replication of Flavell, Beach, and Chinsky (1966): Spontaneous Verbal Rehearsal in a Memory Task as a Function of Age

    Get PDF
    Work by Flavell, Beach, and Chinsky indicated a change in the spontaneous production of overt verbalization behaviors when comparing young children (age 5) with older children (age 10). Despite the critical role that this evidence of a change in verbalization behaviors plays in modern theories of cognitive development and working memory, there has been only one other published near replication of this work. In this Registered Replication Report, we relied on researchers from 17 labs who contributed their results to a larger and more comprehensive sample of children. We assessed memory performance and the presence or absence of verbalization behaviors of young children at different ages and determined that the original pattern of findings was largely upheld: Older children were more likely to verbalize, and their memory spans improved. We confirmed that 5- and 6-year-old children who verbalized recalled more than children who did not verbalize. However, unlike Flavell et al., substantial proportions of our 5- and 6-year-old samples overtly verbalized at least sometimes during the picture memory task. In addition, continuous increase in overt verbalization from 7 to 10 years old was not consistently evident in our samples. These robust findings should be weighed when considering theories of cognitive development, particularly theories concerning when verbal rehearsal emerges and relations between speech and memory

    Resource-sharing in multiple component working memory

    Get PDF
    Working memory research often focuses on measuring the capacity of the system and how it relates to other cognitive abilities. However, research into the structure of working memory is less concerned with an overall capacity measure but rather with the intricacies of underlying components and their contribution to different tasks. A number of models of working memory structure have been proposed, each with different assumptions and predictions, but none of which adequately accounts for the full range of data in the working memory literature. We report 2 experiments that investigated the effects of load manipulations on dual-task verbal temporary memory and spatial processing. Crucially, we manipulated cognitive load around the measured memory span of each individual participant. We report a clear effect of increasing memory load on processing accuracy, but only when memory load is increased above each participant’s measured memory span. However, increasing processing load did not affect memory performance. We argue that immediate verbal memory may rely both on a temporary phonological store and on activated traces in long-term memory, with the latter deployed to support memory performance for supraspan lists and when a high memory load is coupled with a processing task. We propose that future research should tailor the load manipulations to the capacities of individual participants and suggest that contrasts between models of working memory may be more apparent than real

    Flexible attention allocation to visual and auditory working memory tasks: manipulating reward induces a trade-off

    Get PDF
    Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual array comparison task and a tone sequence comparison task. In the critical conditions, an increase in reward for one task corresponded to a decrease in reward for the concurrent task, but memory load remained constant. Our results show patterns of interference consistent with a trade-off between the tasks, suggesting that a shared resource can be flexibly divided, rather than only fully allotted to either of the tasks. Our findings support a role for a domain-general resource in models of working memory, and furthermore suggest that this resource is flexibly divisible

    The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network

    Get PDF
    Source at https://doi.org/10.1177/2515245918797607.Concerns about the veracity of psychological research have been growing. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions or replicate prior research in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time limited), efficient (in that structures and principles are reused for different projects), decentralized, diverse (in both subjects and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside the network). The PSA and other approaches to crowdsourced psychological science will advance understanding of mental processes and behaviors by enabling rigorous research and systematic examination of its generalizability

    Working Memory Underpins Cognitive Development, Learning, and Education

    Get PDF
    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice
    • 

    corecore