463 research outputs found

    The Atlantic Ocean at the last glacial maximum: 1. Objective mapping of the GLAMAP sea-surface conditions

    Get PDF
    Recent efforts of the German paleoceanographic community have resulted in a unique data set of reconstructed sea-surface temperature for the Atlantic Ocean during the Last Glacial Maximum, plus estimates for the extents of glacial sea ice. Unlike prior attempts, the contributing research groups based their data on a common definition of the Last Glacial Maximum chronozone and used the same modern reference data for calibrating the different transfer techniques. Furthermore, the number of processed sediment cores was vastly increased. Thus the new data is a significant advance not only with respect to quality, but also to quantity. We integrate these new data and provide monthly data sets of global sea-surface temperature and ice cover, objectively interpolated onto a regular 1°x1° grid, suitable for forcing or validating numerical ocean and atmosphere models. This set is compared to an existing subjective interpolation of the same base data, in part by employing an ocean circulation model. For the latter purpose, we reconstruct sea surface salinity from the new temperature data and the available oxygen isotope measurements

    Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany

    Get PDF
    Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∼107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids

    Protein interactions in Xenopus germ plasm RNP particles

    Get PDF
    Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles

    The extraordinary evolutionary history of the reticuloendotheliosis viruses

    Get PDF
    The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events

    Effects of initial aquifer conditions on economic benefits from groundwater conservation

    Get PDF
    Worldwide, there is growing recognition of the need to reduce agricultural groundwater use in response to rapid rates of aquifer depletion. To date, however, few studies have evaluated how benefits of conservation vary along an aquifer's depletion pathway. To address this question, we develop an integrated modeling framework that couples an agro-economic model of farmers' field-level irrigation decision-making with a borehole-scale groundwater flow model. Unique to this framework is the explicit consideration of the dynamic reductions in well yields that occur as an aquifer is depleted, and how these changes in intraseasonal groundwater supply affect farmers' ability to manage production risks caused by climate variability and, in particular, drought. For an illustrative case study in the High Plains region of the United States, we apply our model to analyze the value of groundwater conservation activities for different initial aquifer conditions. Our results demonstrate that there is a range of initial conditions for which reducing pumping will have long-term economic benefits for farmers by slowing reductions in well yields and prolonging the usable lifetime of an aquifer for high-value irrigated agriculture. In contrast, restrictions on pumping that are applied too early or too late will provide limited welfare benefits. We suggest, therefore, that there are ‘windows of opportunity’ to implement groundwater conservation, which will depend on complex feedbacks between local hydrology, climate, crop growth, and economics

    Reconstruction of Lamb weather type series back to the eighteenth century

    Get PDF
    The Lamb weather type series is a subjective catalogue of daily atmospheric patterns and flow directions over the British Isles, covering the period 1861–1996. Based on synoptic maps, meteorologists have empirically classified surface pressure patterns over this area, which is a key area for the progression of Atlantic storm tracks towards Europe. We apply this classification to a set of daily pressure series from a few stations from western Europe, in order to reconstruct and to extend this daily weather type series back to 1781. We describe a statistical framework which provides, for each day, the weather types consistent enough with the observed pressure pattern, and their respective probability. Overall, this technique can correctly reconstruct almost 75% of the Lamb daily types, when simplified to the seven main weather types. The weather type series are described and compared to the original series for the winter season only. Since the low frequency variability of synoptic conditions is directly related to the North Atlantic Oscillation (NAO), we derive from the weather type series an NAO index for winter. An interesting feature is a larger multidecadal variability during the nineteenth century than during the twentieth century

    The Native Wolbachia Endosymbionts of Drosophila melanogaster and Culex quinquefasciatus Increase Host Resistance to West Nile Virus Infection

    Get PDF
    The bacterial endosymbiont Wolbachia pipientis has been shown to increase host resistance to viral infection in native Drosophila hosts and in the normally Wolbachia-free heterologous host Aedes aegypti when infected by Wolbachia from Drosophila melanogaster or Aedes albopictus. Wolbachia infection has not yet been demonstrated to increase viral resistance in a native Wolbachia-mosquito host system.In this study, we investigated Wolbachia-induced resistance to West Nile virus (WNV; Flaviviridae) by measuring infection susceptibility in Wolbachia-infected and Wolbachia-free D. melanogaster and Culex quinquefasciatus, a natural mosquito vector of WNV. Wolbachia infection of D. melanogaster induces strong resistance to WNV infection. Wolbachia-infected flies had a 500-fold higher ID50 for WNV and produced 100,000-fold lower virus titers compared to flies lacking Wolbachia. The resistance phenotype was transmitted as a maternal, cytoplasmic factor and was fully reverted in flies cured of Wolbachia. Wolbachia infection had much less effect on the susceptibility of D. melanogaster to Chikungunya (Togaviridae) and La Crosse (Bunyaviridae) viruses. Wolbachia also induces resistance to WNV infection in Cx. quinquefasciatus. While Wolbachia had no effect on the overall rate of peroral infection by WNV, Wolbachia-infected mosquitoes produced lower virus titers and had 2 to 3-fold lower rates of virus transmission compared to mosquitoes lacking Wolbachia.This is the first demonstration that Wolbachia can increase resistance to arbovirus infection resulting in decreased virus transmission in a native Wolbachia-mosquito system. The results suggest that Wolbachia reduces vector competence in Cx. quinquefasciatus, and potentially in other Wolbachia-infected mosquito vectors

    The Interaction of LFA-1 on Mononuclear Cells and ICAM-1 on Tubular Epithelial Cells Accelerates TGF-β1-Induced Renal Epithelial-Mesenchymal Transition

    Get PDF
    The epithelial-mesenchymal transition (EMT) of renal epithelial cells (RTECs) has pivotal roles in the development of renal fibrosis. Although the interaction of lymphocyte function-associated antigen 1 (LFA-1) on leukocytes and its ligand, intracellular adhesion molecule 1 (ICAM-1), plays essential roles in most inflammatory reactions, its pathogenetic role in the EMT of RTECs remains to be clarified. In the present study, we investigated the effect of the interaction of LFA-1 on peripheral blood mononuclear cells (PBMCs) and ICAM-1 on HK-2 cells after stimulation with TGF-β1 on the EMT of RTECs. ICAM-1 was highly expressed in HK-2 cells. After TGF-β1 stimulation, the chemokines CCL3 and CXCL12 increased on HK-2 cells. After co-culture of PBMCs and HK-2 cells pre-stimulated with TGF-β1 (0.1 ng/ml) (HK-2-TGF-β1 (0.1)), the expression of the active form of LFA-1 increased on PBMCs; however, total LFA-1 expression did not change. The expression of the active form of LFA-1 on PBMCs did not increase after co-culture with not CCL3 but CXCL12 knockdown HK-2-TGF-β1 (0.1). The expression of epithelial cell junction markers (E-cadherin and occludin) further decreased and that of mesenchymal markers (vimentin and fibronectin) further increased in HK-2-TGF-β1 (0.1) after co-culture with PBMCs for 24 hrs (HK-2-TGF-β1 (0.1)-PBMCs). The phosphorylation of ERK 1/2 but not smad2 and smad3 increased in HK-2-TGF-β1 (0.1)-PBMCs. The snail and slug signaling did not increase HK-2-TGF-β1 (0.1)-PBMCs. Although the migration and invasion of HK-2 cells induced full EMT by a high dose (10.0 ng/ml) and long-term (72–96 hrs) TGF-β1 stimulation increased, that of HK-2-TGF-β1 (0.1)-PBMCs did not increase. These results suggested that HK-2 cells stimulated with TGF-β1 induced conformational activation of LFA-1 on PBMCs by increased CXCL12. Then, the direct interaction of LFA-1 on PBMCs and ICAM-1 on HK-2 cells activated ERK1/2 signaling to accelerate the part of EMT of HK-2 cells induced by TGF-β1
    • …
    corecore