114 research outputs found
Implementación y desarrollo de un sistema de control distribuido para el experimento LHCb del CERN
Please see the document attached
The Research and Implementation of ERP System in Small and Medium Size Plastics Manufacturing Industries
国际金融危机和制造业间的激烈竞争对中小制造业的信息化建设提出了迫切的要求。作为制造业中先进的管理理念和信息技术相结合的产物,ERP代表了未来企业管理的方向,这已经成为企业信息化建设的共识。越来越多的中小制造企业已经建成或准备实施ERP系统,借助ERP实现企业资源的有效管理,提高企业的核心竞争力。 随着中小制造业ERP实施的普及,如何快速成功地实施ERP具有重要的研究意义。论文第一章对中小制造业ERP的应用现状及ERP实施中存在的问题进行了详细的阐述,第二章对中小制造业实施ERP系统的需求、选型、模式和方法等关键因素进行了深入的研究,为ERP的成功实施提供了详细的理论参考和有效的实践指导。 ...The international financial crisis and fierce competition demand development of informationalization in Small and Medium Size manufacturing industries. As a product of advanced management and information technology, ERP represents the direction of future business management, which has become the common understanding in the development of informationalization. More and more Small and Medium Size m...学位:工学硕士院系专业:信息科学与技术学院自动化系_控制理论与控制工程学号:X200722300
Combined kinase inhibitors of MEK1/2 and either PI3K or PDGFR are efficacious in intracranial triple-negative breast cancer
Background: Triple-negative breast cancer (TNBC), lacking expression of hormone and human epidermal growth factor receptor 2 receptors, is an aggressive subtype that frequently metastasizes to the brain and has no FDA-approved systemic therapies. Previous literature demonstrates mitogen-Activated protein kinase kinase (MEK) pathway activation in TNBC brain metastases. Thus, we aimed to discover rational combinatorial therapies with MEK inhibition, hypothesizing that co-inhibition using clinically available brain-penetrant inhibitors would improve survival in preclinical models of TNBC brain metastases. Methods: Using human-derived TNBC cell lines, synthetic lethal small interfering RNA kinase screens were evaluated with brain-penetrant inhibitors against MEK1/2 (selumetinib, AZD6244) or phosphatidylinositol-3 kinase (PI3K; buparlisib, BKM120). Mice bearing intracranial TNBC tumors (SUM149, MDA-MB-231Br, MDA-MB-468, or MDA-MB-436) were treated with MEK, PI3K, or platelet derived growth factor receptor (PDGFR; pazopanib) inhibitors alone or in combination. Tumors were analyzed by western blot and multiplexed kinase inhibitor beads/mass spectrometry to assess treatment effects. Results: Screens identified MEK+PI3K and MEK+PDGFR inhibitors as tractable, rational combinations. Dual treatment of selumetinib with buparlisib or pazopanib was synergistic in TNBC cells in vitro. Both combinations improved survival in intracranial SUM149 and MDA-MB-231Br, but not MDA-MB-468 or MDA-MB-436. Treatments decreased mitogen-Activated protein kinase (MAPK) and PI3K (Akt) signaling in sensitive (SUM149 and 231Br) but not resistant models (MDA-MB-468). Exploratory analysis of kinome reprogramming in SUM149 intracranial tumors after MEK PI3K inhibition demonstrates extensive kinome changes with treatment, especially in MAPK pathway members. Conclusions: Results demonstrate that rational combinations of the clinically available inhibitors selumetinib with buparlisib or pazopanib may prove to be promising therapeutic strategies for the treatment of some TNBC brain metastases. Additionally, effective combination treatments cause widespread alterations in kinase pathways, including targetable potential resistance drivers
Reed-sternberg cells form by abscission failure in the presence of functional aurora B kinase
Large multinucleated Reed-Sternberg cells (RS) and large mononucleated Hodgkin cells (H) are traditionally considered to be the neoplastic population in classical Hodgkin lymphoma, (cHL) and postulated to promote the disease. However, the contribution of these larger cells to the progression of cHL remains debatable. We used established cHL cell lines and cHL cellular fractions composed of small mononucleated cells only or enriched in large RS/H cells to investigate RS/H cell origin and to characterize the cells which they derive from. We confirm that the small mononucleated cells give rise to RS/H cells, and we show that the latter proliferate significantly more slowly than the small cells. By using live-cell imaging, we demonstrate that binucleated RS cells are generated by failure of abscission when a few small cells attempt to divide. Finally, our results reveal that the small mononucleated cells are chromosomally unstable, but this is unlikely to be related to a malfunctioning chromosomal passenger protein complex. We propose that the small mononucleated cells, rather than the RS/H cells, are the main drivers of cHL
Lapatinib in Combination With Radiation Diminishes Tumor Regrowth in HER2+ and Basal-Like/EGFR+ Breast Tumor Xenografts
To determine whether lapatinib, a dual epidermal growth factor receptor (EGFR)/HER2 kinase inhibitor, can radiosensitize EGFR+ or HER2+ breast cancer xenografts
LCCC 1025: a phase II study of everolimus, trastuzumab, and vinorelbine to treat progressive HER2-positive breast cancer brain metastases
Purpose: HER2 + breast cancer (BC) is an aggressive subtype with high rates of brain metastases (BCBM). Two-thirds of HER2 + BCBM demonstrate activation of the PI3K/mTOR pathway driving resistance to anti-HER2 therapy. This phase II study evaluated everolimus (E), a brain-permeable mTOR inhibitor, trastuzumab (T), and vinorelbine (V) in patients with HER2 + BCBM. Patients and methods: Eligible patients had progressive HER2 + BCBM. The primary endpoint was intracranial response rate (RR); secondary objectives were CNS clinical benefit rate (CBR), extracranial RR, time to progression (TTP), overall survival (OS), and targeted sequencing of tumors from enrolled patients. A two-stage design distinguished intracranial RR of 5% versus 20%. Results: 32 patients were evaluable for toxicity, 26 for efficacy. Intracranial RR was 4% (1 PR). CNS CBR at 6 mos was 27%; at 3 mos 65%. Median intracranial TTP was 3.9 mos (95% CI 2.2–5). OS was 12.2 mos (95% CI 0.6–20.2). Grade 3–4 toxicities included neutropenia (41%), anemia (16%), and stomatitis (16%). Mutations in TP53 and PIK3CA were common in BCBM. Mutations in the PI3K/mTOR pathway were not associated with response. ERBB2 amplification was higher in BCBM compared to primary BC; ERBB2 amplification in the primary BC trended toward worse OS. Conclusion: While intracranial RR to ETV was low in HER2 + BCBM patients, one-third achieved CNS CBR; TTP/OS was similar to historical control. No new toxicity signals were observed. Further analysis of the genomic underpinnings of BCBM to identify tractable prognostic and/or predictive biomarkers is warranted. Clinical Trial: (NCT01305941)
Rotating with the brakes on and other unresolved features of the vacuolar ATPase
The rotary ATPase family is comprised of the ATP synthase (F-ATPase), vacuolar ATPase (V-ATPase) and acrahael ATPase (A-ATPase). These either predominantly utilise a proton gradient for ATP synthesis or use ATP to produce a proton gradient, driving secondary transport and acidifying organelles. With advances in electron microscopy (EM) has come a significant increase in our understanding of the rotary ATPase family. Following the sub nm resolution reconstructions of both the F and V-ATPase the secondary structure organisation of the elusive subunit a has now been resolved, revealing a novel helical arrangement. Despite these significant developments in our understanding of the rotary ATPases there are still a number of unresolved questions about the mechanism, regulation, and overall architecture, which this mini-review aims to highlight and discuss
First observation of Bs -> D_{s2}^{*+} X mu nu decays
Using data collected with the LHCb detector in proton-proton collisions at a
centre-of-mass energy of 7 TeV, the semileptonic decays Bs -> Ds+ X mu nu and
Bs -> D0 K+ X mu nu are detected. Two structures are observed in the D0 K+ mass
spectrum at masses consistent with the known D^+_{s1}(2536) and
$D^{*+}_{s2}(2573) mesons. The measured branching fractions relative to the
total Bs semileptonic rate are B(Bs -> D_{s2}^{*+} X mu nu)/B(Bs -> X mu nu)=
(3.3\pm 1.0\pm 0.4)%, and B(Bs -> D_{s1}^+ X munu)/B(Bs -> X mu nu)= (5.4\pm
1.2\pm 0.5)%, where the first uncertainty is statistical and the second is
systematic. This is the first observation of the D_{s2}^{*+} state in Bs
decays; we also measure its mass and width.Comment: 8 pages 2 figures. Published in Physics Letters
Saccharomyces cerevisiae mutants affected in vacuole assembly or vacuolar H+-ATPase are hypersensitive to lead (Pb) toxicity
Lead is an important environmental pollutant. The role of vacuole, in Pb detoxification, was studied using a vacuolar protein sorting mutant strain (vps16Δ), belonging to class C mutants. Cells disrupted in VPS16 gene, did not display a detectable vacuolar-like structure. Based on the loss of cell proliferation capacity, it was found that cells from vps16Δ mutant exhibited a hypersensitivity to Pb-induced toxicity, compared to wild type (WT) strain. The function of vacuolar H+-ATPase (V-ATPase), in Pb detoxification, was evaluated using mutants with structurally normal vacuoles but defective in subunits of catalytic (vma1Δ or vma2Δ) or membrane domain (vph1Δ or vma3Δ) of V-ATPase. All mutants tested, lacking a functional V-ATPase, displayed an increased susceptibility to Pb, comparatively to cells from WT strain. Modification of vacuolar morphology, in Pb-exposed cells, was visualized using a Vma2p-GFP strain. The treatment of yeast cells with Pb originated the fusion of the medium size vacuolar lobes into one enlarged vacuole. In conclusion, it was found that vacuole plays an important role in the detoxification of Pb in Saccharomyces cerevisiae; in addition, a functional V-ATPase was required for Pb compartmentalization.The authors thank the Fundacao para a Ciencia e a Tecnologia (FCT) through the Portuguese Government for their financial support of this work through the grant PEST-OE/EQB/LA0023/2011 to IBB
Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer
Introduction: Estrogen receptor-negative (ER-) breast cancer is a heterogeneous disease with limited therapeutic options. The molecular apocrine subtype constitutes 50% of ER-tumors and is characterized by overexpression of steroid response genes including androgen receptor (AR). We have recently identified a positive feedback loop between the AR and extracellular signal-regulated kinase (ERK) signaling pathways in the molecular apocrine subtype. In this feedback loop, AR regulates ERK phosphorylation through the mediation of ErbB2 and, in turn, ERK-CREB1 signaling regulates the transcription of AR in molecular apocrine cells. In this study, we investigated the therapeutic implications of the AR-ERK feedback loop in molecular apocrine breast cancer.Methods: We examined a synergy between the AR inhibitor flutamide and the MEK inhibitor CI-1040 in the molecular apocrine cell lines MDA-MB-453, HCC-1954 and HCC-202 using MTT cell viability and annexin V apoptosis assays. Synergy was measured using the combination index (CI) method. Furthermore, we examined in vivo synergy between flutamide and the MEK inhibitor PD0325901 in a xenograft model of the molecular apocrine subtype. The effects of in vivo therapies on tumor growth, cell proliferation and angiogenesis were assessed.Results: We demonstrate synergistic CI values for combination therapy with flutamide and CI-1040 across three molecular apocrine cell lines at four dose combinations using both cell viability and apoptosis assays. Furthermore, we show in vivo that combination therapy with flutamide and MEK inhibitor PD0325901 has a significantly higher therapeutic efficacy in reducing tumor growth, cellular proliferation and angiogenesis than monotherapy with these agents. Moreover, our data suggested that flutamide and CI-1040 have synergy in trastuzumab resistance models of the molecular apocrine subtype. Notably, the therapeutic effect of combination therapy in trastuzumab-resistant cells was associated with the abrogation of an increased level of ERK phosphorylation that was developed in the process of trastuzumab resistance.Conclusions: In this study, we demonstrate in vitro and in vivo synergies between AR and MEK inhibitors in molecular apocrine breast cancer. Furthermore, we show that combination therapy with these inhibitors can overcome trastuzumab resistance in molecular apocrine cells. Therefore, a combination therapy strategy with AR and MEK inhibitors may provide an attractive therapeutic option for the ER-/AR+ subtype of breast cancer
- …