77 research outputs found

    Micromechanical Coupled Study of Crack Growth Initiation Criterion in Pressure Vessel Steel

    Get PDF
    We present results of the combined design-theoretical investigation of the mechanism of crack growth at the onset of ductile fracture of NPP reactor pressure vessels. Micromechanical approach to the prediction of ductile fracture has been applied, according to which the volume fraction of voids in the deformed material is determined by finite-element method. On the basis of CT-specimen tests and known damage parameters, obtained on smooth spherical specimens, we obtained micromechanical criterion of crack growth initiation for ductile fracture.Представлены результаты комплексного расчетно-экспериментального исследования механизма распространения трещины на начальном этапе вязкого разрушения корпусных сталей АЭС. Использован микромеханический подход к прогнозированию вязкого разрушения, согласно которому объемное содержание пор деформируемого материала определяется методом конечных элементов. На основании проведенных испытаний образцов СТ с трещиной и имеющихся данных о параметрах разрушения гладких сферических образцов установлен микромеханический критерий начала развития трещины в условиях вязкого разрушения материала.Представлено результати комплексного розрахунково-експериментального дослідження механізму розповсюдження тріщини на початковому етапі в’язкого руйнування корпусних сталей АЕС. Використовується мікромеха- нічний підхід до прогнозування в ’язкого руйнування, згідно з яким об’ємний вміст пор деформівного матеріалу визначається методом скінченних елементів. На основі проведених випробувань зразків СТ із тріщиною та відомих даних про параметри руйнування гладких сферичних зразків установлено мікромеханічний критерій початку розвитку тріщини в умовах в ’язкого руйнування

    Novel Colicin F-Y of Yersinia frederiksenii Inhibits Pathogenic Yersinia Strains via YiuR-Mediated Reception, TonB Import, and Cell Membrane Pore Formation

    Get PDF
    A novel colicin type, designated colicin F-Y, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin F-Y was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin F-Y activity gene (cfyA) and the colicin F-Y immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin F-Y was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin F-Y-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin F-Y receptor molecule. Introduction of the yiuR gene into the colicin F-Y-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin F-Y. In contrast, the colicin F-Y-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin F-Y only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins F-Y and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin F-Y and colicin Ib producers suggest a common evolutionary origin of the colicin F-Y-YiuR and colicin Ib-Cir systems

    Yersinia enterocolitica palearctica serobiotype O:3/4 - a successful group of emerging zoonotic pathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-pathogenic <it>Y. enterocolitica </it>ssp. <it>enterocolitica </it>caused several human outbreaks in Northern America. In contrast, low pathogenic <it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 is responsible for sporadic cases worldwide with asymptomatic pigs being the main source of infection. Genomes of three <it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 human isolates (including the completely sequenced Y11 German DSMZ type strain) were compared to the high-pathogenic <it>Y. enterocolitica </it>ssp. <it>enterocolitica </it>8081 O:8/1B to address the peculiarities of the O:3/4 group.</p> <p>Results</p> <p>Most high-pathogenicity-associated determinants of <it>Y. enterocolitica </it>ssp. <it>enterocolitica </it>(like the High-Pathogenicity Island, <it>yts1 </it>type 2 and <it>ysa </it>type 3 secretion systems) are absent in <it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 genomes. On the other hand they possess alternative putative virulence and fitness factors, such as a different <it>ysp </it>type 3 secretion system, an RtxA-like and insecticidal toxins, and a N-acetyl-galactosamine (GalNAc) PTS system (<it>aga</it>-operon). Horizontal acquisition of two prophages and a tRNA-Asn-associated GIYep-01 genomic island might also influence the <it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 pathoadaptation. We demonstrated recombination activity of the PhiYep-3 prophage and the GIYep-01 island and the ability of the <it>aga</it>-operon to support the growth of the <it>Y. enterocolitica </it>ssp. <it>enterocolitica </it>O:8/1B on GalNAc.</p> <p>Conclusions</p> <p><it>Y. enterocolitica </it>ssp. <it>palearctica </it>serobiotype O:3/4 experienced a shift to an alternative patchwork of virulence and fitness determinants that might play a significant role in its host pathoadaptation and successful worldwide dissemination.</p

    Reduced Secretion of YopJ by Yersinia Limits In Vivo Cell Death but Enhances Bacterial Virulence

    Get PDF
    Numerous microbial pathogens modulate or interfere with cell death pathways in cultured cells. However, the precise role of host cell death during in vivo infection remains poorly understood. Macrophages infected by pathogenic species of Yersinia typically undergo an apoptotic cell death. This is due to the activity of a Type III secreted effector protein, designated YopJ in Y. pseudotuberculosis and Y. pestis, and YopP in the closely related Y. enterocolitica. It has recently been reported that Y. enterocolitica YopP shows intrinsically greater capacity for being secreted than Y. pestis YopJ, and that this correlates with enhanced cytotoxicity observed for high virulence serotypes of Y. enterocolitica. The enzymatic activity and secretory capacity of YopP from different Y. enterocolitica serotypes have been shown to be variable. However, the underlying basis for differential secretion of YopJ/YopP, and whether reduced secretion of YopJ by Y. pestis plays a role in pathogenesis during in vivo infection, is not currently known. It has also been reported that similar to macrophages, Y. enterocolitica infection of dendritic cells leads to YopP-dependent cell death. We demonstrate here that in contrast to Y. enterocolitica, Y. pseudotuberculosis infection of bone marrow–derived dendritic cells does not lead to increased cell death. However, death of Y. pseudotuberculosis–infected dendritic cells is enhanced by ectopic expression of YopP in place of YopJ. We further show that polymorphisms at the N-terminus of the YopP/YopJ proteins are responsible for their differential secretion, translocation, and consequent cytotoxicity. Mutation of two amino acids in YopJ markedly enhanced both translocation and cytotoxicity. Surprisingly, expression of YopP or a hypersecreted mutant of YopJ in Y. pseudotuberculosis resulted in its attenuation in oral mouse infection. Complete absence of YopJ also resulted in attenuation of virulence, in accordance with previous observations. These findings suggest that control of cytotoxicity is an important virulence property for Y. pseudotuberculosis, and that intermediate levels of YopJ-mediated cytotoxicity are necessary for maximal systemic virulence of this bacterial pathogen

    Survival in amoeba: a major selection pressure on the presence of bacterial copper and zinc resistance determinants?: identification of a "copper pathogenicity island"

    Get PDF
    The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs

    Trends of the Major Porin Gene (ompF) Evolution: Insight from the Genus Yersinia

    Get PDF
    OmpF is one of the major general porins of Enterobacteriaceae that belongs to the first line of bacterial defense and interactions with the biotic as well as abiotic environments. Porins are surface exposed and their structures strongly reflect the history of multiple interactions with the environmental challenges. Unfortunately, little is known on diversity of porin genes of Enterobacteriaceae and the genus Yersinia especially. We analyzed the sequences of the ompF gene from 73 Yersinia strains covering 14 known species. The phylogenetic analysis placed most of the Yersinia strains in the same line assigned by 16S rDNA-gyrB tree. Very high congruence in the tree topologies was observed for Y. enterocolitica, Y. kristensenii, Y. ruckeri, indicating that intragenic recombination in these species had no effect on the ompF gene. A significant level of intra- and interspecies recombination was found for Y. aleksiciae, Y. intermedia and Y. mollaretii. Our analysis shows that the ompF gene of Yersinia has evolved with nonrandom mutational rate under purifying selection. However, several surface loops in the OmpF porin contain positively selected sites, which very likely reflect adaptive diversification Yersinia to their ecological niches. To our knowledge, this is a first investigation of diversity of the porin gene covering the whole genus of the family Enterobacteriaceae. This study demonstrates that recombination and positive selection both contribute to evolution of ompF, but the relative contribution of these evolutionary forces are different among Yersinia species

    Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli

    Get PDF
    Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E. coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results suggest strategies for virulence-targeted therapies

    Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82

    Get PDF
    International audienceBACKGROUND: Ileal lesions of Crohn's disease (CD) patients are abnormally colonized by pathogenic adherent-invasive Escherichia coli (AIEC) able to invade and to replicate within intestinal epithelial cells and macrophages. PRINCIPAL FINDINGS: We report here the complete genome sequence of E. coli LF82, the reference strain of adherent-invasive E. coli associated with ileal Crohn's disease. The LF82 genome of 4,881,487 bp total size contains a circular chromosome with a size of 4,773,108 bp and a plasmid of 108,379 bp. The analysis of predicted coding sequences (CDSs) within the LF82 flexible genome indicated that this genome is close to the avian pathogenic strain APEC_01, meningitis-associated strain S88 and urinary-isolated strain UTI89 with regards to flexible genome and single nucleotide polymorphisms in various virulence factors. Interestingly, we observed that strains LF82 and UTI89 adhered at a similar level to Intestine-407 cells and that like LF82, APEC_01 and UTI89 were highly invasive. However, A1EC strain LF82 had an intermediate killer phenotype compared to APEC-01 and UTI89 and the LF82 genome does not harbour most of specific virulence genes from ExPEC. LF82 genome has evolved from those of ExPEC B2 strains by the acquisition of Salmonella and Yersinia isolated or clustered genes or CDSs located on pLF82 plasmid and at various loci on the chromosome. CONCLUSION: LF82 genome analysis indicated that a number of genes, gene clusters and pathoadaptative mutations which have been acquired may play a role in virulence of AIEC strain LF82

    Entropy-Based Modeling for Estimating Adversarial Bit-flip Attack Impact on Binarized Neural Network

    No full text
    Over past years, the high demand to efficiently process deep learning (DL) models has driven the market of the chip design companies. However, the new Deep Chip architectures, a common term to refer to DL hardware accelerator, have slightly paid attention to the security requirements in quantized neural networks (QNNs), while the black/white -box adversarial attacks can jeopardize the integrity of the inference accelerator. Therefore in this paper, a comprehensive study of the resiliency of QNN topologies to black-box attacks is examined. Herein, different attack scenarios are performed on an FPGA-processor co-design, and the collected results are extensively analyzed to give an estimation of the impact\u27s degree of different types of attacks on the QNN topology. To be specific, we evaluated the sensitivity of the QNN accelerator to a range number of bitflip attacks (BFAs) that might occur in the operational lifetime of the device. The BFAs are injected at uniformly distributed times either across the entire QNN or per individual layer during the image classification. The acquired results are utilized to build the entropy-based model that can be leveraged to construct resilient QNN architectures to bit-flip attacks
    corecore