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Abstract

The presence of metal resistance determinants in bacteria usually is attributed to geological or

anthropogenic metal contamination in different environments, or associated with the use of antimicrobial

metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan

predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in

bacteria. In this review we outline evidence supporting this hypothesis, as well as highlight the correlation

between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the

“copper pathogenicity island” identified in E. coli and Salmonella strains isolated from copper and zinc fed

Danish pigs.
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Introduction

Essential metals such as iron and copper can cycle between different oxidation states and are used in

metalloenzymes that catalyze electron transport reactions. Zinc also plays a major structural and catalytic

role in metalloenzymes, and has been reported to counter oxidative stress. But in excess all of these metals

are deleterious to cells. To ensure their own survival prokaryotes have developed mechanisms of

maintaining cellular Zn
2+
and Cu

+
homeostasis , while eukaryotes invented very original Zn and Cu binding

structures not present in prokaryotes. Such structures allow accumulation of Zn
2+

in the intracellular

organelles followed by its utilization in biological processes specific for a given cell type. In particular,

macrophages employ Zn
2+
and Cu

+
to attack Fe-S clusters essential for bacterial survival (Dupont et al.,

2011; Festa and Thiele 2012; Macomber and Imlay 2009; Neyrolles et al., 2015; Subashchandrabose et al.,

2014, Xu and Imlay 2012). We hypothesize that such a mechanism, where bacterial killing occurs through

accumulation of Zn
2+
and Cu

+
in the phagosome/vacuole, originated in protozoa long before multicellular

life arose and that it later evolved in eukaryotic phagocytes. Our hypothesis is supported by the presence

of the homologous copper transporter 1 (Ctr1) in macrophages and P80 in Dictyostelium discoideum and

Acanthamoeba castellanii – proteins, both of which are involved in Cu
+
uptake upon phagocytosis. In

addition, amoebae are known to contain P-type ATPases (German et al., 2013; Burlando et al., 2002), and,

similar to macrophages, at least one of these P-type ATPases in A. castellanii could be pumping Zn
2+
or Cu

+

into the phagosome of amoeba (Figure 1). Importantly, our hypothesis explains selection of genes involved

in conferring copper and zinc resistance not only by the presence of these metals in the environment, but

by protozoan predation as well. Since these determinants would aid survival in both protozoans and

macrophages one could expect a higher occurrence of additional copper and zinc resistance determinants

in virulent bacteria.
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A copper silver resistance cluster- or an ancestral defense to phagosomal killing using copper?

Genome sequencing projects have revealed that several strains of Salmonella enterica subspecies enterica

harbor a ca. 12 kb copper-resistance locus. This cluster is shown to either form part of a Tn7-like

transposon inserted at the 3′ end of the gene that encodes a NAD-utilizing dehydrogenase on the

chromosome (Peters et al., 2014), as found in isolates from serovars Heidelberg, Montevideo, Senftenberg

or Tennessee; or to be a part of a larger integrating conjugative element inserted at the pheV phenylalanine

tRNA, as present in strains of the serovars Senftenberg, Ohio or Cubana. Although there is a history of

copper and zinc resistant bacteria being isolated from feces of animals fed with a metal supplement

containing diets, presence of this resistance cluster has just recently been recognized.

Recently, we have sequenced the genomes of two Escherichia coli and three Salmonella enterica serovar

Typhimurium strains isolated from copper and zinc fed Danish pigs, hence, displaying high level copper

resistance (Lüthje et al., 2014; Qin et al., 2014). One of the E. coli strains and all three of the Salmonella

strains contained a specific 19-gene mobile genetic element that we have named as the “Copper

pathogenicity island”. In the E. coli isolate we have identified this island as a part of Tn7-like transposon,

while in the S. Typhimurium strains it forms part of an approximately 80-kbp chromosomal element

inserted at the pheU phenylalanine tRNA, similar to that identified in Heidelberg, Montevideo, Senftenberg

or Tennessee isolates (Qin et al., 2014). This genetic cluster is comprised of two previously reported metal

ion resistance determinants, neither of which was realized until recently to be part of a single contiguous

gene cluster (Crossman et al., 2010, Hobman and Crossman 2015). One, the pco determinant was first

isolated from plasmid pRJ1004 from an Australian pig E. coli isolate (Brown et al., 1995), and confers copper

resistance. The other, the sil determinant originally located on Salmonella Typhimurium plasmid pMG101,

but later shown to have transferred into the chromosome of the host E. coli K-12 J53 strain (Randall et al.,

2015), is associated with silver resistance (McHugh et al., 1975; Gupta et al., 1999). Later sequencing of

pRJ1004 (NCBI accession # KC146966) has identified two new genes among the entire 19-gene cluster –
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pcoF encoding a putative copper-binding protein, and pcoG encoding a putative M23B metallopeptidase, an

enzyme that has been implicated in pathogenicity (Bonis et al., 2010) (Figure 2). We have identified this

arrangement of pco/sil genes in a number of different genome and plasmid sequences.

Similarly, the sil determinant has been associated with pathogenicity in the Enterobacter cloacae complex,

where presence of the genes conferring silver resistance was increased in isolates from hospital settings vs.

strains associated with plants (Kremer and Hoffmann 2012). Although identification of the pco genes was

not part of that study, their presence within the isolates harboring the full sil determinant is very likely

based on the high rate of co-representation (Mourão et al. 2015) (Table 1).

Previous studies and genomic analysis have shown that the copper pathogenicity island is often plasmid

associated. Transfer of such plasmids has resulted in a nosocomial outbreak of Klebsiella pneumonia

(Sandegren et al., 2012). Moreover, the pco/sil cluster has been identified on pAPEC-O2-R plasmids from

avian pathogenic E. coli (Johnson et al., 2005), R478 from Serratia marcescens (Gilmour et al., 2004),

plasmids pK2044 and pLVPK from Klebsiella pneumonia strains (Chen et al., 2004; Wu et al., 2009), and on

the chromosome or plasmids of many pathogenic enteric bacteria such as ETEC H10407 (Crossman et al.,

2010) and EHEC O104:H4 (Hobman and Crossman 2015) and Enterobacter cloacae subsp. cloacae strain

ATCC 13047 (Ren et al., 2010). For E. coli and Enterobacter strains the copper pathogenicity island was

identified in close vicinity to Tn7-like transposons with tnsABCD being present (Peters et al., 2014). At the

same time, in Klebsiella strains it was often associated with IS4-related elements and genes encoding a HNH

endonuclease. These data together with the fact of a similar arrangement of a copper/silver resistance
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island has been found in Salmonella (Moreno Switt et al., 2012) indicate that the gene cluster behaves like

a typical pathogenicity island.

Yersiniabactin- not just for iron

Our recent sequencing of E. coli strains isolated from copper-fed pigs allowed us to identify another

determinant conferring increased copper resistance – a 10 gene yersiniabactin synthesis cluster (Lüthje et

al., 2014). The yersiniabactin determinant is a well-known virulence factor responsible for copper binding

(Chaturvedi et al., 2014) that can be present in pathogens such as Klebsiella pneumonia (Fodah et al.,

2014), Salmonella (Aviv et al., 2014), E. coli (Schubert et al., 2004), including EHEC O104:H4 outbreak strain,

and highly virulent Yersinia pestis (Rakin et al., 2012). Interestingly, and several strains of Klebsiella and

Escherichia coli appear to have the sil/pco determinant in addition to the yersiniabactin synthesis cluster

(Table 1).

Copper and zinc resistance in Gram-positive bacteria

Pathogenicity of Gram-positive bacteria such as Enterococcus faecium, Enterococcus faecalis,

Staphylococcus aureus and Staphylococcus haemolyticus is also linked to transition metal resistance.

Currently, we have sequenced the genomes of three highly copper-resistant E. faecium and three E. faecalis

strains isolated from copper-fed pigs in Denmark (Zhang et al., in press). As a result, we have identified

additional copper resistance determinants characteristic for many pathogenic Enterococci, tcrYAZB,

encoding a negative transcriptional regulator, a copper chaperone and two P1B-Type ATPases flanked by

mobile elements (Hasman 2005). In E. faecalis this determinant has often been found in the vicinity of a

gene encoding a multicopper oxidase resembling CueO, an adjacently encoded two-component system and

possibly CopY. Whether CueO is regulated by the adjacent two-component system or CopY is not known. In

this genome region there are also several putative copper chaperones and a prolipoprotein diacylglyceryl

transferase, which has been associated with virulence (Cho et al., 2013; Reffuveille et al., 2012) (Figure 3).
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In addition to copper, zinc resistance has also been linked to virulence and increased survival rates of

pathogens. For example, in group A Streptococcus czcD and gczA deletion mutants characterized by higher

zinc sensitivity had shown much lower survival rates in the presence of neutrophils compared to wild type

strains (Ong et al., 2014). Certain correlation between the presence of the zinc resistance gene czrC,

methicillin resistance and virulence has been found in many S. aureus strains (Slifierz et al., 2014; Aarestrup

et al., 2010). The gene crzC encodes a Zn
2+
-translocating P-type ATPase and is located next to a gene

encoding a possible transcriptional regulator of the ArsR/SmtB family and a gene encoding a putative

iron/zinc permease. According to genomic similarities the latter might be a distant homolog of the zinc/iron

importer ZupT. Sequencing of the S. haemolyticus SH32 clinical strain has identified two incomplete

Staphylococcal cassette chromosome (SCC) elements, with one of them, SCCmec(SH32), encoding a

Cu(I)-translocating P-type ATPase (Yu et al., 2014). This strain was also shown to contain a putative

cadmium resistance determinant cadXD, encoding for a Cd(II) transporter as well as a transcription

regulator of the ArsR family (Yu et al., 2014). A recent study has reported that plasmid SAP078A in

methicillin-resistant Staphylococcus aureus CC22 SCCmecIV (EMRSA-15) contains cadCA, mco and copB in

addition to an ars operon conferring resistance to cadmium/zinc, copper and arsenic, respectively (Loeffler

et al., 2013). It was also shown that plasmid SAP078A is wide spread among both human and animal

isolates of S. aureus (Loeffler et al., 2013). Moreover, given the role of transition metals in the mammalian

immune response, the presence of cadCA and copB/mco provides corresponding strains with an advantage

(Hood and Skaar 2012). Interestingly, the epidemic ST22-IV has been replacing other MRSA clones from

hospitals possibly due to enhanced virulence. Detailed studies revealed that ST22-IV has a significantly

higher capacity to invade the A549 cells and a higher virulence in a murine model of acute lung infection
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causing severe inflammation and determining death in all the mice within 60 hours (Baldan et al., 2012;

Baldan et al., 2015). We suggest that severe pathogenicity of ST22-IV might be partially attributed to

increased transition metal resistance of this strain.

Cadmium and Silver resistance- mutation plus selection equals evolution to new resistance?

Due to much lower environmental distribution of cadmium and silver they are not essential micronutrients

for bacteria and no data has been published on their involvement in bacteria/host interactions. Therefore,

it is unlikely for bacteria to develop specific resistance mechanisms to these metals to a large extent. At the

same time, most of the metal resistance determinants described to date are involved in detoxification of

multiple substrates, e.g. conferring resistance to both copper and silver as well as to both zinc and

cadmium (Rensing et al., 1999; Rosenzweig and Arguello 2012). Moreover, both E. coli and Salmonella

contain detoxification systems for zinc and copper in addition to the possible plasmid encoded resistance

determinants on their chromosomes. In other words, it is quite unlikely that the evolutionary pressure

comes exclusively from metal contaminated environments. Rather, resistance to silver is a by-product of

copper resistance and cadmium a by-product of zinc resistance. In fact, resistance studies with S. aureus

were unable to produce silver-resistant strains even after 42 days of continuous passage in the presence of

AgNO3 (Randall et al., 2013) Similar results were observed for some Gram-negative organisms, whereas in

E. coli strains silver resistance arises as a result of mutations in both ompR and cusS, or mediated through

sil system (Randall et al., 2015).

Metal homeostasis in bacteria is a delicate balance, especially since metals like zinc and iron have been

found to be essential for the pathogenicity of these organisms. The fact that protozoan grazing might be a

strong force on keeping or gaining resistances against copper or zinc in nature together with the data

suggesting that the concentrations necessary to maintain resistance plasmids within a population are well

below the minimal inhibitory concentration (MIC) of the non-plasmid containing susceptible stain (Gullberg

et al., 2014) might explain the prevalence of resistance mechanisms. Increasing metal contamination
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caused by anthropogenic metal use in agriculture and other sectors, might also result in increased ability of

protozoans to utilize copper and zinc to kill phagocytized bacteria. This, in turn, can cause higher level of

resistance in bacteria – mechanism that has been primarily selected to avoid protozoan killing. In addition,

copper is known to induce viable but non-culturable (VBNC) state in some bacteria, causing increase in

their survival rates (Ordax et al., 2006). It has been reported that cells of the VBNC state might have been

responsible for the recent E. coli O104:H4 outbreak (Aurass et al., 2011).

It is worth noting here that copper-induced resistance combined with high toxicity and non-selectivity of

redox processes induced by copper presence in cells present major challenges for developing copper-based

antimicrobial therapy. Recently, Festa et al have published a novel approach that allows accumulation of

copper in pathogen cells without activating its Cu-resistant mechanisms and significantly increases

selectivity of the treatment (Festa et al., 2014). In other strategies Cu (II) ions have been either utilized as a

carriers for known antibiotics, allowing them to bypass existing efflux-mediated resistance to drugs

(Manning et al., 2014; Lopes et al., 2013; Shams et al., 2014), or as chelators that upon binding to ligand

change its conformation to the “active” mode (Haeili et al., 2014). Several potent copper chelators with

activity against MRSA and M. tuberculosis strains have been identified through drug screening assays

specifically designed for identification of copper-dependent antimicrobial compounds (Speer et al., 2013)

with, potentially, more discoveries on the way.
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Figure Captions

Figure 1. A schematic overview of Zn and Cu involvement in phagosomal killing of bacteria.

Macrophages and amoeba can exploit similar molecules for Zn
2+
and Cu

+
trafficking. ZIP family transporters

allow Zn
2+
uptake into the cytoplasm, and cation diffusion facilitator proteins (CDF) could deliver Zn

2+
to the

phagosome and other organelles, like mitochondria, Golgi and Endoplasmatic Reticulum (ER). Cu
+
uptake

and delivery to phagosomes occur due to copper transporter 1 (Ctr1, in amoeba known as P80), antioxidant

1 copper chaperone (Atox1) and in human macrophages the P-type ATPase ATP7A. H
+
–ATPase causes

acidification of the phagosomal milieu while natural resistance associated macrophage protein 1 (NRAMP1)

removes Fe
2+
and Mn

2+
, which are needed to protect (Mn

2+
) and rebuild degraded Fe-S clusters of bacteria.

In addition, Cu
+
amplifies toxicity of ROS (hydroxyl radical (OH) and hydroxid anion (OH

−
). E. coli express

genes encoding ZntA for Zn
2+
efflux, CopA for Cu

+
efflux and the CusCBA complex for periplasmic Cu

+
efflux

but virulent strains have additional copper resistance systems.

Figure 2. Pco and Sil Mechanisms in Action

Proposed genes and protein products forming the molecular mechanisms of Pco and Sil mediated copper

and silver detoxification and control in the cell. The bottom line indicates the genes and their

transcriptional and translational directions, with the open circles representing potential promoter

regions/transcript start sites. The illustrated function of each sil and pco gene product within the operon

(Gram negative) is deduced from homology modelling. The transcription of Pco proteins PcoABCDEFG

appears to be regulated by PcoRS (left). The roles of PcoFG have not been elucidated. In addition to the

oxidised catechol siderophores, copper may be detoxified from Cu
+
to Cu

2+
by the suggested multi-copper

oxidase PcoA. PcoB possibly functions as the outer membrane transporter; whilst sitting in the inner
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membrane PcoD drives the transport of Cu
+
from the periplasm to the cytoplasm, with periplasmic PcoC

chaperoning/delivering the Cu
+
to PcoD. PcoE is an additional chaperone that binds copper in the periplasm

and probably shuttles it to PcoA and/or PcoS. Similarly, the Sil system (right) contains a homolog to PcoE -

periplasmic protein SilE. SilE is predicted to bind and chaperone Ag
+
, Cu

+
and Cu

2+
to the three-polypeptide,

transmembrane, chemiosmotic RND exchange system (SilCBA), exporting the metal ions out of the cell.

Likewise, SilF acts as a chaperone to SilCBA too. The other putative efflux pump mediating the mechanism

is a P-type ATPase – SilP. Although conserved within the sil-determinant, a role of SilG has not yet been

determined. While the expression of silCFBAGP is thought to be governed by the two-component

membrane sensor and transcriptional responder SilRS; the expression of silE, just like homolog pcoE, is

thought to be regulated/co-regulated by the Cus system (Zimmerman et al., 2012) and therefore SilE

perhaps is involved in the activation of regulators SilRS (proposed by dotted arrow).

Figure 3. Copper fitness island in Enterococcus faecalis

Proposed genes and protein products forming the molecular mechanisms of copper detoxification in E.

fecalis. The bottom line indicates the genes and their transcriptional and translational directions. TcrY

regulates expression of tcrYAZB, encoding for the repressor, a cytoplasmic chaperone (TcrZ) and two P-type

ATPases (TcrA and TcrB) responsible for Cu
+
export. In close proximity to tcr genes encoding a two-

component regulatory system (CueRS), a multicopper oxidase (CueO) a predicted metal chaperone (no

homology to TcrZ and labeled “C”) and transcriptional repressor (CopY) have been identified. CueO is

predicted to oxidize Cu
+
to Cu

2+
. It is not clear to what extend the predicted chaperon (C) might be involved

in copper detoxification. It has not yet been established if transcription of these genes is controlled by the

two-component regulatory system (CusRS) responding to external copper concentration, CopY, as a

response to internal copper concentrations, or both. Adjacent to and separating the two copper resistance

determinants genes encoding prolipoprotein diacylglyceryl transferase (A), integral membrane protein (B),
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hypothetical proteins (D), transposase (E), disrupted P-type ATPase (F), integrase (G), adenylate kinase (I)

and resolvase (I) have been identified. The extent to that some of these proteins might be involved in

copper detoxification has not been analyzed.
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Tables

Table 1 Distribution of copper/silver resistance cluster and yersiniabactin biosynthesis amongst

Enterobacteriaceae

Genus
a)

Number of

sequences

analyzed
b)

occurance of copper/silver tolerance determinants

pco
c)

sil
d)

pco/sil
e) yersiniabacti

n synthesis
f)

pco/silP and

yersiniabacti

n synthesis
g)

Citrobacter

4 genomes

5 plasmids

2

0

2

0

2

0

1

0

0

Cronobacter

6 genomes

5 plasmids

1

3

1

3

1

3

0

0

0

Enterobacter

16 genomes

12 plasmids

5

3

6

3

5

3

1

0

0

Escherichia

74 genomes

71 plasmids

10

2

10

4

10

2

42

0

6

Klebsiella

32 genomes

33 plasmids

0

29

0

29

0

29

17

0

6

Raoultella

2 genomes

1 plasmid

0

0

0

0

0

0

1

0

0

Salmonella

252 genomes

77 plasmids

5

1

5

1

5

1

0

1

0

Serratia

18 genomes

8 plasmids

0

1

0

1

0

1

0

0

0

Yersinia

33 genomes

33 plasmids

0

0

0

0

0

0

27

0

0

a)
genera of Enterobacteriaceae harboring pco, sil and/or ybt

b)
number of completed genomic and plasmid sequences of respective genera available for Microbial

Genome BLAST® (http://blast.ncbi.nlm.nih.gov; accessed 05/18/2015)



20

c)
analysis (blastn) using pco from pRJ1004 (accession # X83541.1; Brown et al., 1995) as query

d)
analysis (blastn) using sil from pMG101 (accession # NG_035131.1; Gupta et al., 1999) as query

e)
analysis (blastn) using pco (accession # X83541.1; Brown et al., 1995) and sil (accession # KC146966.1;

Staehlin et al., 2013 – direct submission) from pRJ1004 as query

f)
analysis (tblastn) using Ybt peptide/polyketide synthetase HMWP1 (accession # AAC69588.1; Gehring et

al., 1999) as query

g)
number of strains harboring pco/sil and ybt with determinants being located on chromosome and/or

plasmid, respectively
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