118 research outputs found

    Control of the Physical and Technical Properties of Water in Technological Processes

    Get PDF
    The physical and technical properties of water activated by the electrochemical treatment in a two-chamber electrolizer are investigated. The regularities of changes inthe values of acidity, redox potential, ionic composition, concentration of oxygen, structural organization of catholyte and anolyte are revealed. The possibility of controlling the properties of the liquid for more efficient extraction of polymetallic minerals by flotation is described

    Creation of functional solid-state composites based on black peat

    Get PDF
    The paper presents investigations of composite materials based on black peats of Barabinskoe and Taganskoe deposits of the Tomsk region and carboxymethyl cellulose, both modified with iron (Ш) and copper (II) chloride solutions. In order to improve hydrophobic properties of compositions, optimum salt concentrations are detected. Water sorption and desorption isotherms are obtained for modified specimens. It is suggested to employ synthesized solid-state compositions as insulators in the capacity of both humidity controller and indoor-contaminant absorber

    Tribological properties of hydraulic fluids modified by peat-based additives

    Get PDF
    The paper presents physicochemical investigations of the structure and properties of a nano-modifier synthesized from peat, the local raw material subjected to pyrolysis in air-free conditions. This nano-modifying additive is a combination of various forms of nanocarbon and polar and non-polar adsorbing materials such as silica (SiO[2]), calcium carbonate (CaCO[3]) and carbon (C). Different nanocarbon forms (nanotubes, fullerenes, nanodiamonds, nanofiber, nanodispersed carbon) used in different proportions with micro and macro peat components give multifunctional properties to the synthesized nano-modifier and the ability to positively change tribological properties of hydraulic fluids and oil lubricants. Test results of type TMT-600 show that its different percentage is required to modify tribological properties of the steel tribocouple under different loading conditions. At 0.5 wt.% content of this nano-modifier, stabilization of the friction ratio and an increase of seizure load are observed

    Control of microimpurities emitted from polymer construction materials based on polyvinyl chloride

    Get PDF
    The aim of this article is to improve the degree control of microimpurities emitted from polymeric construction materials into the environment. It is proposed to do this through the modification of the physicochemical nature of the original (source) sorbent and, as a consequence, the improvement of the sorption capacity and the extraction ratio of highly volatile toxic substances. The proposed concentrator columns can be widely used in the analysis of microimpurities of polar organic substances released into the environment from polymeric construction materials based on polyvinyl chloride

    Control of microimpurities emitted from polymer construction materials based on polyvinyl chloride

    Get PDF
    The aim of this article is to improve the degree control of microimpurities emitted from polymeric construction materials into the environment. It is proposed to do this through the modification of the physicochemical nature of the original (source) sorbent and, as a consequence, the improvement of the sorption capacity and the extraction ratio of highly volatile toxic substances. The proposed concentrator columns can be widely used in the analysis of microimpurities of polar organic substances released into the environment from polymeric construction materials based on polyvinyl chloride

    The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment.

    Get PDF
    Anthropogenic hyper-alkaline sites provide an environment that is analogous to proposed cementitious geological disposal facilities (GDF) for radioactive waste. Under anoxic, alkaline conditions cellulosic wastes will hydrolyse to a range of cellulose degradation products (CDP) dominated by isosaccharinic acids (ISA). In order to investigate the potential for microbial activity in a cementitious GDF, cellulose samples were incubated in the alkaline (∼pH 12), anaerobic zone of a lime kiln waste site. Following retrieval, these samples had undergone partial alkaline hydrolysis and were colonised by a Clostridia dominated biofilm community, where hydrogenotrophic, alkaliphilic methanogens were also present. When these samples were used to establish an alkaline CDP fed microcosm, the community shifted away from Clostridia, methanogens became undetectable and a flocculate community dominated by Alishewanella sp. established. These flocs were composed of bacteria embedded in polysaccharides and protein stabilised by extracellular DNA. This community was able to degrade all forms of ISA with >60% of the carbon flow being channelled into extracellular polymeric substance (EPS) production. This study demonstrated that alkaliphilic microbial communities can degrade the CDP associated with some radioactive waste disposal concepts at pH 11. These communities divert significant amounts of degradable carbon to EPS formation, suggesting that EPS has a central role in the protection of these communities from hyper-alkaline conditions

    Ectothiorhodospira variabilis, sp. nov., an alkaliphilic and halophilic purple sulfur bacterium from soda lakes

    Get PDF
    During studies of moderately halophilic strains of Ectothiorhodospira from steppe soda lakes, we found a novel group of bacteria related to Ectothiorhodospira haloalkaliphila with salt optima at 50–80 g NaCl l”1. Phylogenetic analysis using 16S rRNA gene sequences of strains from soda lakes in Mongolia, Egypt and Siberia revealed separation of the group of new isolates from other Ectothiorhodospira species, including the closely related Ect. haloalkaliphila. DNA–DNA hybridization studies demonstrated that the new isolates form a homogeneous group at the species level, but at the same time are distinct from related species such as Ect. haloalkaliphila, Ect. vacuolata, Ect. shaposhnikovii and Ect. marina. The new isolates are considered to be strains of a novel species, for which the name Ectothiorhodospira variabilis sp. nov. is proposed, with the type strain WN22T (5VKM B-2479T 5DSM 21381T). Photosynthetic pigments of the novel species are bacteriochlorophyll a and carotenoids of the spirilloxanthin series with spirilloxanthin and derivatives thereof, together with small amounts of lycopene and rhodopin. Gas vesicles are formed by most of the strains, particularly in media containing yeast extract (0.5 g l”1) and acetate (0.5–2.0 g l”1). Sequence analysis of nifH (nitrogenase) and cbbL (RuBisCO) confirmed the assignment of the strains to the genus Ectothiorhodospira and in particular the close relationship to Ect. haloalkaliphila. The novel species Ect. variabilis is found in soda lakes separated by great geographical distances and is an alkaliphilic and halophilic bacterium that tolerates salt concentrations up to 150–200 g NaCl l”1

    Management of diabetes during Ramadan: an update for Russian-speaking doctors

    Get PDF
    Fasting during the Islamic Ramadan month is one of the five obligatory pillars for each adult, healthy, and sane Muslim. People with severe illnesses, including type 1 and type 2 diabetes mellitus are exempt from fasting. However, many Muslims often insist on Ramadan participating despite any medical advises. It’s known that Muslims are the second largest religious group in Russia; thus, its crucial to have as much modern recommendation for management patients with type 1 and type 2 diabetes mellitus as possible. The aim of this narrative review is to evaluate physiological and pathophysiological metabolism changing during holy Ramadan month, to clarify the management of patients with type 1 and type 2 diabetes mellitus during Ramadan, to determine the frequency of glucose measuring during the day, and to understand when its time to interrupt the fasting. Moreover, we discuss specific recommendations in glucose-lowering therapy changing, nutrition, physical activities and education

    Immunoglobulin, glucocorticoid, or combination therapy for multisystem inflammatory syndrome in children: a propensity-weighted cohort study

    Get PDF
    Background: Multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with SARS-CoV-2 infection, has emerged as a serious illness in children worldwide. Immunoglobulin or glucocorticoids, or both, are currently recommended treatments. Methods: The Best Available Treatment Study evaluated immunomodulatory treatments for MIS-C in an international observational cohort. Analysis of the first 614 patients was previously reported. In this propensity-weighted cohort study, clinical and outcome data from children with suspected or proven MIS-C were collected onto a web-based Research Electronic Data Capture database. After excluding neonates and incomplete or duplicate records, inverse probability weighting was used to compare primary treatments with intravenous immunoglobulin, intravenous immunoglobulin plus glucocorticoids, or glucocorticoids alone, using intravenous immunoglobulin as the reference treatment. Primary outcomes were a composite of inotropic or ventilator support from the second day after treatment initiation, or death, and time to improvement on an ordinal clinical severity scale. Secondary outcomes included treatment escalation, clinical deterioration, fever, and coronary artery aneurysm occurrence and resolution. This study is registered with the ISRCTN registry, ISRCTN69546370. Findings: We enrolled 2101 children (aged 0 months to 19 years) with clinically diagnosed MIS-C from 39 countries between June 14, 2020, and April 25, 2022, and, following exclusions, 2009 patients were included for analysis (median age 8·0 years [IQR 4·2–11·4], 1191 [59·3%] male and 818 [40·7%] female, and 825 [41·1%] White). 680 (33·8%) patients received primary treatment with intravenous immunoglobulin, 698 (34·7%) with intravenous immunoglobulin plus glucocorticoids, 487 (24·2%) with glucocorticoids alone; 59 (2·9%) patients received other combinations, including biologicals, and 85 (4·2%) patients received no immunomodulators. There were no significant differences between treatments for primary outcomes for the 1586 patients with complete baseline and outcome data that were considered for primary analysis. Adjusted odds ratios for ventilation, inotropic support, or death were 1·09 (95% CI 0·75–1·58; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids and 0·93 (0·58–1·47; corrected p value=1·00) for glucocorticoids alone, versus intravenous immunoglobulin alone. Adjusted average hazard ratios for time to improvement were 1·04 (95% CI 0·91–1·20; corrected p value=1·00) for intravenous immunoglobulin plus glucocorticoids, and 0·84 (0·70–1·00; corrected p value=0·22) for glucocorticoids alone, versus intravenous immunoglobulin alone. Treatment escalation was less frequent for intravenous immunoglobulin plus glucocorticoids (OR 0·15 [95% CI 0·11–0·20]; p<0·0001) and glucocorticoids alone (0·68 [0·50–0·93]; p=0·014) versus intravenous immunoglobulin alone. Persistent fever (from day 2 onward) was less common with intravenous immunoglobulin plus glucocorticoids compared with either intravenous immunoglobulin alone (OR 0·50 [95% CI 0·38–0·67]; p<0·0001) or glucocorticoids alone (0·63 [0·45–0·88]; p=0·0058). Coronary artery aneurysm occurrence and resolution did not differ significantly between treatment groups. Interpretation: Recovery rates, including occurrence and resolution of coronary artery aneurysms, were similar for primary treatment with intravenous immunoglobulin when compared to glucocorticoids or intravenous immunoglobulin plus glucocorticoids. Initial treatment with glucocorticoids appears to be a safe alternative to immunoglobulin or combined therapy, and might be advantageous in view of the cost and limited availability of intravenous immunoglobulin in many countries. Funding: Imperial College London, the European Union's Horizon 2020, Wellcome Trust, the Medical Research Foundation, UK National Institute for Health and Care Research, and National Institutes of Health

    Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source

    Get PDF
    The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.We thank Douwe Bartstra (Vereniging tot Behoud van de Gasbronnen in Noord-Holland, The Netherlands), Carla Frijters (Paques BV, The Netherlands) and Teun Veuskens (Laboratory of Microbiology, WUR, The Netherlands) for sampling; Martin Meirink (Hoogheemraadschap Hollands Noorderkwartier, The Netherlands) for physicochemical data; Freek van Sambeek for providing Figure 1; Lennart Kleinjans (Laboratory of Microbiology, WUR, The Netherlands) for help with pyrosequencing analysis, Irene Sánchez-Andrea (Laboratory of Microbiology, WUR, The Netherlands) for proof-reading and Katharina Ettwig (Department of Microbiology, Radboud University Nijmegen, The Netherlands) for providing M. oxyfera DNA. We want to thank all anonymous reviewers for valuable contributions. This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009) and the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO)
    corecore