265 research outputs found

    ACTIVE TENDON CONTROL OF CABLE-STAYED BRIDGES

    Get PDF

    Programmable unitary spatial modes manipulation

    Full text link
    Free space propagation and conventional optical systems such as lenses and mirrors all perform spatial unitary transforms. However, the subset of transforms available through these conventional systems is limited in scope. We present here a unitary programmable mode converter (UPMC) capable of performing any spatial unitary transform of the light field. It is based on a succession of reflections on programmable deformable mirrors and free space propagation. We first show theoretically that a UPMC without limitations on resources can perform perfectly any transform. We then build an experimental implementation of the UPMC and show that, even when limited to three reflections on an array of 12 pixels, the UPMC is capable of performing single mode tranforms with an efficiency greater than 80% for the first 4 modes of the TEM basis

    Semi-active damping using a hybrid control approach

    Get PDF
    In this article, a hybrid control framework is used to design semi-active controllers for vibration reduction. It is shown that the semi-active skyhook damper, typically used for vibration reduction, can be recast in the framework of an event-driven intermittent controller. By doing this, we can then exploit the well-developed techniques associated with hybrid control theory to design the semi-active control system. Illustrative simulation examples are based on a 2 degree-of-freedom system, often used to model the dynamics of a quarter car body model. The simulation results demonstrate how hybrid control design techniques can improve the overall performance of the semi-active control system

    Isolation and damping properties of magnetorheologic elastomers

    Get PDF
    Abstract. This paper considers two systems based on a magnetorheological elastomer (MRE): a MRE isolator under a frequency varying harmonic excitation and a MRE Dynamic Vibration Absorber (DVA) mounted on a frequency-varying structure under a random excitation. It is shown that the commandability of the elastomer improves the isolation performances in the first case, and decreases the stress level in the structure in the second case

    A new approach to assess and predict the functional roles of proteins across all known structures

    Get PDF
    The three dimensional atomic structures of proteins provide information regarding their function; and codified relationships between structure and function enable the assessment of function from structure. In the current study, a new data mining tool was implemented that checks current gene ontology (GO) annotations and predicts new ones across all the protein structures available in the Protein Data Bank (PDB). The tool overcomes some of the challenges of utilizing large amounts of protein annotation and measurement information to form correspondences between protein structure and function. Protein attributes were extracted from the Structural Biology Knowledgebase and open source biological databases. Based on the presence or absence of a given set of attributes, a given protein’s functional annotations were inferred. The results show that attributes derived from the three dimensional structures of proteins enhanced predictions over that using attributes only derived from primary amino acid sequence. Some predictions reflected known but not completely documented GO annotations. For example, predictions for the GO term for copper ion binding reflected used information a copper ion was known to interact with the protein based on information in a ligand interaction database. Other predictions were novel and require further experimental validation. These include predictions for proteins labeled as unknown function in the PDB. Two examples are a role in the regulation of transcription for the protein AF1396 from Archaeoglobus fulgidus and a role in RNA metabolism for the protein psuG from Thermotoga maritima
    • …
    corecore