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Summary

In this work, we investigate the active damping of vibrations of the cable-stayed 
structures. The control strategy involves an active tendon consisting of an ac- 
tuator controlling the displacement of the cable anchor point collocated with a 
force transducer sensing the dynamic tension in the cable. We hâve developed 
a control law {Intégral Force Feedback) which guarantees stability and damping, 
even for nonlinear Systems. The efRciency and the robustness of this control 
law hâve been experimentally confirmed on several laboratory cable structure 
mock-ups; the structure is nicely damped, even at the parametric résonance. 
The control strategy has been implemented in a decentralized manner for cable 
structures with several cables. For démonstration purposes, a laboratory scale- 
model has been designed with two dominant degrees of freedom (representing 
the torsion and the bending modes of the bridge deck) and provided with two 
cables equipped with active tendons. Experiments hâve been performed on this 
test article, and the properties of the Intégral Force Feedback hâve been demon- 
strated.
Simple and powerful criteria hâve also been established, which allow one to pre- 
dict the closed-loop pôles of the System; these criteria are likely to be useful 
for the design of active cable-stayed structures. Ail the theoretical results hâve 
been confirmed experimentally on the test articles.
The torsion flutter of a cable-stayed bridge, has been simulated on a laboratory 
mock-up using a specially designed control System involving a shaker and an ac- 
celerometer. It has been demonstrated that the flutter speed can be significantly 
increased when the decentralized active tendon is applied to the cable-stayed 
structure.
We hâve also established an efficient modelling technique of cable structures; 
the nonlinear analytical model combines a finite element model of the structure 
and the nonlinear dynamics of the stay cables. This technique is very efficient 
and especially adapted for control System design purposes.
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Chapter 1

Introduction

Over the past 30 years , the center span of cable-stayed bridges with two plane 
stay cables bas increased considerably, as we can see in Fig.l.l.a for Japanese 
bridges. In Europe, the main span of the largest existing cable-stayed bridge is 
850 m (Normandy bridge in France (Fig.l.l.b)), and future projects are expected 
to exceed 1000 m. These structures are very flexible, because the strength of 
high performance materials increases faster than their stiffness. Consequently, 
the damping of cable-stayed bridges has become a major issue in civil engineer
ing, because their high flexibility makes them more sensitive to wind and trafflc 
induced vibrations as well as to flutter instability which can lead to the complété 
destruction of the structure. The most famous example is the Tacoma Narrows 
suspended bridge, which collapsed under torsion flutter at a wind speed of 42 
mph, on November 7*^, 1940 (Fig.1.3).
Cables hâve been widely used as structural member in many fields of engineer
ing, including transmission overhead Unes, guyed trusses and towers, roofs in 
large public building as the olympic stadium in Australia, tension trusses for 
large déployable antennas in space, high speed transportation, suspended and 
cable-stayed bridges. The current design of the space station is largely based on 
trusses, but it is quite likely that the future large space structures (LSS) will use 
large trusses connected by tension cables, to increase their global stiffness, in a 
way similar to that used to stiffen the airplanes in the early days of aeronautics. 
This concept of tension truss structure has already been used for large mesh 
antennas (a 10 m déployable mesh antenna was flown by the Russian in 1979). 
The cable dynamics is essentially nonlinear; it is responsible of a strong inter
action with the structure to which they are anchored; the best known of these 
interactions is the parametric excitation, which can sometimes lead to serions 
damages. Under spécial weather conditions combining ice and wind, transmis
sion lines can expérience large amplitude vibrations known as galloping-, these 
oscillations are responsible of failures. During, the passage of a high speed train, 
the overhead equipment and the pantograph is another example of coupled dy-

1
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Figure 1.1: Cable stayed bridges : (a) Evolution of the center span in Japan, 
(b) Schematic view of the Normandy bridge in France.

namic System involving cables. The varying elasticity of the catenary (along 
the track) and the dynamic response of the overhead structure to the moving 
contact force induces vibrations of the pantograph. As a resuit, contact loss 
arises and leads to a disturbance of the power transmission as well as abrasion 
and érosion of the contact wire.
Ail the above examples where the vibrations are detrimental to the structure 
show the need for damping devices to reduce the amplitude of the oscillations.

1.1 Sources of excitation

As the span of cable-stayed bridges increases, the stay cables become more 
and more important, because their light weight, their high flexibility and low 
inhérent damping makes them more sensitive to wind and rain-wind induced 
vibration as well as deck and pylon vibration.
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Figure 1.2: Cable structures.

1.1.1 Wind induced vibration

Wind induced vibrations of the stay cables are well known as one of the im
portant design issue in the aeroelastic design of the recent cable-stayed bridges, 
because of their low damping structural characteristics and basically circular 
cross-section. Wind induced vibration of a single stay cable with circular pro
file is due to a vortex-induced vibration. As steady wind blows across a cable, 
small vortices of air are shed alternately above and below the cable, inducing 
a periodic excitation force with a frequency depending mainly on the cable di- 
ameter and the wind speed. Wind induced vibrations can lead to significant 
oscillations and a strong coupling between in-plane and out-of-plane motion 
arises when internai résonance conditions are met. With the increased size of
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the main span, the cross-section of the stay cables increases; however, the cost 
performance of cables with larger cross-section is not good from the point of 
view of the fabrication and the érection of the cables; therefore, bundle cables 
formed by two or three cables with smaller cross-section are used instead. Refer- 
ring to many experimental works and field observations [75], the bundle cables 
are recognized to be susceptible to wind induced vibration, especially to the so- 
called ”wake galloping”. This aeroelastic phenomenon is due to the turbulent 
air flows in the wake of the upstream cables which causes a varying wind load 
on the downstream cable when the latter oscillâtes in and out the wake of the 
upstream cable. The galloping of a single conductor is due to the modification 
of the cross-section of the cable due to the deposit of an ice accretion on the 
conductor line. The resulting movement is mainly vertical and its amplitude 
may sometimes be comparable the cable sag. The conséquence of this kind of 
fiutter instability often leads to the damages or breakages at conductors.

1.1.2 Rain-wind induced vibration

Another type of stay cable source of excitation is the rain-wind induced vibration 
which is responsible of large oscillation amplitudes of the cables as recorded on 
the Aratsu Bridge in Southern Japan [75]. This self-excited oscillation tends 
to occur in rainy and windy conditions; it is due to the formation of rainwater 
rivulets on the upper side of the cable cross section, which change the cross- 
section, making it more susceptible to aerodynamic excitation. The rain-wind 
induced vibration can occur at low wind velocity (of the order of 10-15 m/s), 
accompanied with rainfall; besides it frequently shows rather large amplitudes, 
sometimes more than seven times the cable diameter.

1.1.3 Parametric excitation

The stay cables are also prone to parametric excitation; the vibrations of the 
deck and the pylon excite the cables through the axial motion of their support 
and large oscillations of the cables arise when some tuning conditions are met. 
Reasonably small amplitudes of an anchorage oscillation may lead to important 
steady-state cable response when the frequency of the anchorage motion is close 
to twice the first natural frequency of the cable. The parametric excitation of 
stay cables has been the origin of minor cracks near the cable anchorages on 
several bridge decks; thus, this nonlinear phenomenon is of considérable impor
tance and needs to be taken into account in the design of cable-stayed bridges. 
The parametric excitation of cables is mostly induced by the bridge deck oscil
lation rather than the pylon. Bridge deck vibration cornes from traffic induced 
vibration as well as wind induced vibration. The former source of excitation 
is responsible of lower amplitudes than the one induced by the buffeting due 
to turbulence around the bridge deck; wind is also responsible of an aeroelastic 
instability known as flutter.



1.2. Passive damping 5

Figure 1.3: Failure of the Tacoma Narrows bridge by torsion flutter at a wind 
speed of 42 mph in 1940.

1.1.4 Flutter of the bridge deck
On several occasions, suspended bridges bave suffered damages, or even com
plété destruction under wind excitation. Large bridges are more sensitive to 
flutter which, in most cases, is associated with the aeroelastic damping coeffi
cient in torsion becoming négative above a critical velocity. Aside from a care- 
ful aerodynamic design of the bridge deck aiming at achieving proper flutter 
dérivatives, the traditional way of increasing the critical flutter speed consists 
of increasing the torsional stiffness by the use of a two plane stay cables and 
deck of stiffened cross-section. However, this solution is limited by the stiffness 
and the inhérent damping characteristics of materials used in civil engineering.

1.2 Passive damping

As the span of cable-stayed bridges increases, the wind loading induced by the 
drag force on the stay cables becomes as important as for the deck. Therefore, in 
addition to aerodynamically stable cross-sections of bridge deck, there is a need 
for low drag stay cables, for future long span bridge. It is well known that the 
drag characteristics of circular cylinders change drastically around the critical 
Reynolds number (1-5 10®), and their behaviour highly dépends on the surface 
roughness. This fundamental idea has become a major issue in the design of 
stay cables, to establish low drag cables by surface modification.
To minimize cable vibrations, passive damping devices for stay cables hâve al- 
ready been developed and used. The standard solution for long span bridges is
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Figure 1.4: Design measures for passive damping of cable vibration.

to insert dampers between the cables and the deck (Fig. 1.4). For example, a pair 
of oil dampers are installed in the Aratsu Bridge [75]. The dashpot dampers de- 
lay the appearance of vibration, but only until a certain level of the excitation, 
and their efficiency is limited by the geometrical constraints of the deck cross- 
section, and also by aesthetic considérations. As mentioned before, large cable 
vibrations can be initiated by the deck and pylon movements. Adjusting cable 
tension to certain values, which will change the natural frequency of the cables, 
may alleviate parametric résonance; however, this solution on a cable-stayed 
bridge is impossible because the static tension in the stay cables are imposed. 
Nowadays, the solution often used to prevent cables from the parametric exci
tation consists in interconnecting the stay cables with auxiliary ropes (Fig. 1.4). 
The cable ties are often criss-crossed from either side of the plane of stays; thus, 
this prévention is twofold : the cable ties force a node in the stays which raises 
frequencies of vibration and they introduce some damping by the presence of 
some frictional forces at the crossover points. This solution has been applied 
on many bridges and recently on the Normandy Bridge in France. The cable 
ties hâve also been installed on the Aratsu Bridge to prevent the cables from 
rain-wind induced vibration. The key issue to prevent the formation of rain 
rivulets is to carefully design the roughness of the stay cables [40]. The short 
fins of the Higashi-Kobe cables are an example of this aerodynamic solution 
[48]. However, there is an évident drawback : the diameter of the cables is
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increased and consequently also the drag forces. To prevent bundle cables from 
wake galloping, interconnecting the stay cables with cable ties is one solution, 
however, not effective. Another method consists in improving the aerodynamic 
performance by so closely and rigidly connecting bundle cables as not to give 
influence of the upstream cable wake to the downstream cable [29]. Another 
damping System for the control of aeolian vibration is the use ”stockbridge 
dampers” clamped on the cable; however, this tuned mass damper has to be 
tuned on the frequency of the cable and the application to cable-stayed bridges 
is not practical and not effective for low frequencies. The anti-galloping devices 
in transmission overhead Unes are based on the frequency tuning between the 
torsion and vertical movement. A proposed solution for bundle conductors [33] 
consists in a combination of torsional damping and increased torsional stiffness. 
The current approach to flutter alleviation consists of a careful aerodynamic 
design of the deck cross-section and an increase of its torsional stiffness. An 
alternative approach which may be more promising for future very long span 
bridges consists of applying active control techniques.

1.3 Active damping of cable-stayed bridges

One solution for flutter alleviation, widely studied, is based on the idea of con- 
stantly monitoring movements of the deck and use a control surface movements 
to generate stabilizing aerodynamic forces (lift) which damps the movement of 
the deck. The flutter control of cable-stayed bridges can be also based on the 
use of a gyrostabilizer or active tendons. The former solution consists in placing 
a gyrostabilizer on the bridge deck in order to control the torque of the deck. 
This concept is the object of a separate investigation at ULB.
The application of active tendons to flutter control has been considered theo- 
retically by Yang [73]. The active tendon methodology consists in providing the 
cable anchorage with an actuator which Controls the axial force in the cable or 
the displacement of the cable support. The strategies differ from each other by 
the localisation of the sensor measuring the structural vibration.

1.4 The proposed active damping strategy

We propose an alternative control strategy based on an active tendon consisting 
of an actuator collocated with a force sensor, as indicated on Fig.1.5. The active 
damping is based on the control of the displacement of the cable anchor point. 
The proposed active tendon control can be extended to other cable structures. 
We hâve developed a control algorithm which guarantees stability and damping 
in the cable structure. The proposed active damping methodology consists in 
providing some stay cables with an active tendon. We hâve established sim
ple and powerful criteria useful for the first step design process of an active
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Figure 1.5: Active tendon control of cable-stayed bridges.

cable structure : the criteria allow the designer to choose the number and the 
location of the active cables with respect to an effective damping of the cable 
structure modes to be controlled. For flutter prévention, the active damping 
design should mainly focus on the first torsion and bending modes. The prop- 
erties of this control strategy and the results are experimentally demonstrated 
on several laboratory test articles. We also propose a modelling technique for 
cable structure dynamics, including the nonlinear dynamics of small sag cables.

1.5 Organization of this work

This thesis is organized in 7 chapters. Chapter 2 describes the analytical non
linear model of a cable subjected to an axially movable support where the ac
tive tendon is located. In chapter 3, the cable nonlinearities are experimentally 
demonstrated on a laboratory mock-up, and compared with the numerical simu
lations, for model validation purposes. Chapter 4 deals with the active damping 
of a cable alone, including a review of the existing control strategies and the 
experimental vérification of our proposed control law. A modelling technique of
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cable structures is presented in chapter 5. The decentralized active tendon con- 
trol is applied to several cable structures in chapter 6, including a single-degree 
of freedom structure, a guyed truss and a simple représentative scale model of 
a cable-stayed bridge. In chapter 7, the decentralized active tendon strategy is 
proposed to control the purely torsion flutter of cable-stayed bridges. Finally, 
the conclusions and the perspectives of industrial applications are discussed in 
chapter 8.



Chapter 2

Vibration of a cable with 
small sag

2.1 Linear theory

A linear theory has been developed by Irvine [24, 26] for the free vibration of 
a uniform suspended cable (see Fig.2.1) in which the sag to span ratio is about 
1:8 or less. He showed that the symmetric in-plane modes dépend heavily on 
a parameter (A^) which allows for the effects of cable geometry and elasticity. 
The theory has been confirmed by experiments. The governing équations are as 
follows.

2.1.1 Static equilibrium

Consider the static equilibrium of a uniform cable (see Fig.2.2) hanging from 
supports located at the same level.

....... P'

2
l_

2

Figure 2.1: Model of the cable.

10
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Figure 2.2: Equilibrium of a cable element.

The équations of static equilibrium of an element of the cable are :

where a is the stress in the cable, p is the spécifie mass of the cable, x is the 
position measured along the cable span and g is the accélération due to gravity. 
If the slope of the cable is small (i.e. cable with small sag, ds ss dx), the profile 
of the cable can be taken as a parabola :

where l is the span and «r® is the static stress in the cable. The relation between 
the sag d at mid span (see Fig.2.1) and the static stress cr® is given by.

d =
8ct®

(2.3)

2.1.2 Dynamic equilibrium

Consider the small displacements of the cable about its static equilibrium posi
tion; if one dénotés by the superscript (s) the static equilibrium, the équations 
of motion read.

^ ■ 
ds

((T® -I- a)
d'^u

^df^
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X

Figure 2.3: Displacement of a cable element.

d
(<7* 4- <t)

d^v
ds
d

(ct* + ct)
( dw^ dw\

ds ^ ds ^ds)

(2.4)

w92
' dt^ - P9

where u and w are the longitudinal and vertical components of the in-plane 
motion respectively; v is the transverse horizontal component (perpendicular to 
the vertical plane through the supports) and a is the additional stress caused 
by the motion. The components of the motion are fonctions of both position 
and time. In order to linearize the previous équations, we assume that the 
sag is small (j < |), that the second order terms can be neglected, and that 
the stress cr induced by the motion is constant along the cable and negligible 
compared to the static stress (a < cr®). It follows that ds ~ dx and u{x, t) ~ 0. 
Expanding the équations, ignoring the longitudinal component, and using the 
static equilibrium équation (2.1), Equ.(2.4) becomes

a
di^v d“^v

(2.5)
dx"^
d^w (Pw‘ d^w

(2.6)
dx"^ ' ^ dx2 ■ dt^

2.1.3 Stress-strain relation
Consider a cable element subjected to a displacement from its static equilibrium 
profile as indicated in Fig.2.3. If ds° dénotés the initial length of the element.
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and ds is its new length, then we hâve

ds° = {dxŸ + [dv^Ÿ + (dw")^
ds^ = {dx + duŸ + {dv“ + dvŸ + (dtn® + dwŸ (2.7)

where u, v and w represent the three components of the dynamic displacement; 
the aocial strain in the cable reads

e = (2.8)ds
Substituting Equ.(2.7) in Equ.(2.8) and expanding e to the second order of finite 
displacements, we obtain,

dx du dv‘dv dw‘dw 1 ^dw\^
ds ds ^ ds ds ^ ds ds ^ 2 \ds J ^ \ds) ^ \ 9s /

(2.9)

The axial stress in the cable is given by the Hooke law

a = Ee (2.10)

where E represents the Young modulus of the cable.
For small sag cable {ds « dx) we hâve

du dv‘dv dw" dw 1 /dv\^ ^dw\^
dx ^ dx dx dx dx ^ 2 \ 9x / ^ V 9x J \ 9x /

(2.11)

Assuming that the cable stress is constant over the span, we rewrite Equ.(2.10) 
in the integrated form,

a{t) = Ee{t) = E
fge(x,t)dx

(2.12)

If we assume that the quadratic contribution of the cable strain is negligible, 
the axial strain becomes

du dw" dw 
dx dx dx

(2.13)

Equations (2.5), (2.6), (2.12) and (2.13) are the linearized équations governing 
the problem. Note that the transverse horizontal motion is uncoupled from the 
in-plane motion, because the transverse horizontal motion involves no additional 
cable stress (to the first order).
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Second mode

Third mode

Figure 2.4: Mode shapes of the out-of-plane modes.

2.1.4 Transverse horizontal motion

A solution of Equ.(2.5) can be obtained by assuming,

v{x, t) = ^2 0n(a:)e*"‘'" ‘ (2-14)
n

where is the natural circular frequency of the transverse vibration. In this 
way, Equ.(2.5) is reduced to,

+ = ^ (2.15)

with the boundary conditions <^n(0) = 4>n{l) = 0. The transverse horizontal 
mode of order n is given by

4>n{x) = A„sin(^^) (2.16)

associated with the natural frequency,

mv

The shapes of the first out-of-plane modes are represented in Fig.2.4.

(2.17)

2.1.5 In-plane motion

The in-plane (vertical) motion contains two types of modes : symmetric and 
antisymmetric modes. A solution of Equ.(2.6), can be obtained assuming
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iü(x,t) = (2.18)
n

Substituting the expression Equ.(2.18) and (2.2) into (2.13), integrating over 
the cable span, we get the dynamic strain in the cable :

e{t) =
Joe{x,t)dx _ 1

= Y ^w(^<) -u{Q,t) + il>n{x)dx (2.19)

l 2Twhere le — f^ds l l + 8(j) represents the approximate length of the
cable. For small sag, we hâve y 1 and le ~ l. Assuming no displacements 
at the anchorages, we hâve u{0,t) = u{l,t) = 0. Substituting Equ.(2.19) in the 
stress-strain relation Equ.(2.12), we obtain the dynamic stress in the cable as a 
function of time only

<7(t) = ^r„e-'"‘ (2.20)
n

with

and

x2^fe£iŸ ^ = E
V CT V \l J

The dimensionless parameter introduced by Irvine [24] is of fundamental im
portance in the static and dynamic response of cables; it accounts for géométrie 
and elastic effects.
Substituting the équations Equ.(2.18), (2.2) and (2.20) into Equ.(2.6), we get 
the équation governing the vertical mode shape,

(2.21)

(2.22)

, , 2 , -“rV’n — P (2.23)

The right hand side of Equ.(2.23) is responsible for the existence of two types 
of modes :

Antisymmetric modes

The antisymmetric in-plane modes consist of antisymmetric vertical components 
and symmetric longitudinal components. In this case, F„ = 0 which indicates 
that no additional cable stress is induced by the motion and Equ.(2.23) becomes
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With the boundary conditions V’n(O) = V’n(0 = 0 the solution of Equ.{2.24) 
yields the expression of antisymmetric in-plane mode shape,

i>2n{x) - A2„sin

associated with the natural frequency,

2n7T
—

(2.25)

(2.26)

Symmetric in-plane modes

Symmetric in-plane modes consist of symmetric vertical components and anti
symmetric longitudinal components. In this Ccise, an additional cable tension is 
induced by the motion. Irvine has established the solution of Equ.(2.23) for the 

symmetric vertical mode [26],

tp2n-l{x) = A2n-1 1 — tan 0nl\ . ,r. s— 1 sm (/3„x) - cos (/3„x)

where

(2.27)

/3n = (2.28)

Substituting the expression of tp2n-i into Equ.(2.21) and (2.23), we obtain the 
transcendental équation governing the natural frequencies of symmetric modes;

tan
2 A2 V 2 y (2.29)

We observe that the parameter involving cable elasticity and geometry (A^) 
plays an important rôle for the in-plane symmetric modes, affecting both the 
shape and the frequency.
Figure 2.5 compares the first two symmetric and antisymmetric in-plane modes 
of a suspended cable with that of a tant string as a function of the parameter 
A^ [24]. We recall that the frequencies of a tant string are given by.

(2.30)

One notices that, for small values of A^, the cable profile approaches that of a 
taut string.
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Figure 2.5: Evolution of the natural frequencies of the in-plane modes of a 
suspended cable as a function of A^.

Figure 2.6: Possible forms for the fîrst symmetric vertical mode shape.
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Fiat extensible cable

■

Figure 2.7: Physical interprétation of the effective axial modulus.

Figure 2.6 shows possible forms for the vertical component of the first symmetric 
in-plane mode. We note the presence of internai nodes for large values of . For 
small , the analytical expression of the symmetric vertical mode shapes and 
natural frequencies are reduced to the same form as the antisymmetric modes :

. f{2n-l)nx\
rp2n-i = A2n-1 sm I --------------- I and uj

Thus, for small sag cables characterized by small A^, we note that no distinction 
can be made between out-of-plane and in-plane frequencies and mode shapes.

2.1.6 The effective axial modulus

Consider a sagged cable in which the ends are being stretched apart (see Fig.2.7). 
The total displacement results from the contribution of an elastic displacement 
5 e due to the cable stretching and a "géométrie” displacement S g due to the sag 
réduction. The length of the cable is,

(2.32)
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Note that the cable length le is a function of the static stress <t®. Since, the 
length of an inextensible cable is constant we can write

(2.33)

and using Equ.(2.32) the condition Equ.(2.33) becomes for small sag cable

dl _ à(^) ^

1 + 1

dl _ l
^ dTo ~ 12 EA

(2.34)

where A dénotés the cable cross-section and Tq = ^<t® represents the static 
tension in the cable. Thus we introduce the "géométrie” stiffness,

dl
EA 12 _ n
l Ôg

(2.35)

Note that this "géométrie” stiffness is a function of the parameter A^. However, 
the axial stiffness of a fiat extensible cable is,

Ke =
EA

l
II
Se

(2.36)

Hence, the équivalent stiffness of an extensible sagged cable is obtained by con- 
sidering the arrangement of two springs in sériés (see Fig.2.7) :

Kg^ Kj

-1 EgA
l

where we hâve introduced the effective axial modulus

Eg
1

1 + 12

E

(2.37)

(2.38)

2.2 Nonlinear model of small sag cables

As seen in the previous section, the linear theory applied to a cable with small 
sag shows that the in-plane and out-of-plane behaviours of the cable are essen- 
tially uncoupled; the out-of-plane modes and the in-plane antisymmetric modes 
are the same as those of a tant string, while the in-plane symmetric modes are 
controlled by A^. This model is inaccurate, because second order terms which 
hâve been ignored turn out to be significant and introduce some coupling be- 
tween the in-plane and out-of-plane motions.
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Figure 2.8; 3D-model of a cable with small support motion (a and b).

Next, we propose a non-linear model of the inclined cable which accounts for 
coupling between the in-plane and out-of-plane motions, and also for the dis
placement of the support points (see Fig.2.8); this problem has been considered 
in [19, 24, 41, 50]. The cable motion is separated into two parts : the quasi- 
static and the dynamic contributions. The model of the cable is written in a 
local coordinate System as indicated in Fig.(2.8); the local x axis is taken along 
the chord line while the 2: axis is in the gravity plane and perpendicular to the 
chord line.

2.2.1 Static configuration

The équations governing the static equilibrium of an element of an inclined cable
are :
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A
ds

-pg cos 0 (2.39)

where tu* is the z component of the cable static profile expressed in the local 
coordinate System {xyz) and 9 is the angle of the chord line with respect to 
the horizontal plane. For small sag {ds « dx), we assume that the stress in the 
cable is constant along the span and is equal to cr“; this assumption is valid only 
for small sag cable because 7 = pg cos 6 cr*. In this context the static profile 
of an inclined cable can be approximated by a parabola,

w = il.
2(7*

(2.40)

where (7® is the static stress, l is the cable chord length, x is the position mea- 
sured along the cable span, 7 is the component of distributed weight along z. 
We note that for an inclined cable, the parameter (2.22) involving cable elasticity 
and geometry is chaiiged into.

A2 = (2.41)

2.2.2 Governing équations

For an inclined cable element subjected to external distributed forces X,y,Z, 
the dynamic equilibrium équations (2.4) become

ds
((7® + a)

f dx du\ 
\ds ^ ds J

+ A’ = pg sin 6

ds

ds

((7® + a) 

(C7® + (j) pg cos 9

(2.42)

where cr® is the static stress, a is the dynamic stress and u, v, w are the com- 
ponents of the cable dynamic motion expressed in the local coordinate System 
(xyz). If we dénoté the two supports by the subscripts a and b, the boundary 
conditions are expressed as.

u{0,t) = Ua{t) 
v(0,t) = Va(t) 
w(0,t) - Wa{t)

u{l,t) = Ub{t) 
v{l,t) = Vb{t) 
w{l,t) = Wb{t)

(2.43)

Using Equ.(2.39) governing the static equilibrium of a small sag cable, Equ.(2.42) 
is simplified as follows.



22 Chapter 2. Vibration of a cable with small sag

da . / a \ O^u d-‘ud^u d^u

da dv g / a \ c)‘v i)^vd^v d^v (2.44)

da
dx

dw‘
dx

w
dx^

+ a-
(Pw
dx“^

„ d^w
^^-P~dF

Assuming the longitudinal inertia force p^ri the longitudinal external force X 
/*\2

and the term to be negligible, the first of équations (2.44) shows that the 
dynamical stress in the cable can be aasumed constant along the cable span. 
Thus, introducing this resuit in the two other équations (2.44), we get

da
dx

= 0

(2.45)

2.2.3 Quasi-static motion

The quasi-static motion (denoted by the subscript q) is the displacement of 
the cable which moves as an elastic tendon due to the support movements; 
it satisfies the time-dependent boundary conditions statically. In the case of 
small displacements of the cable supports, the following assumptions are made 
in Equ.(2.45).

• The stress induced by the quasi-static motion is negligible compared to 
the static stress (tj’ cr®).

• The inertia forces and induced by the transverse movements of 
the cable supports are neglected.

• The second order components of the axial strain in the cable équation 
(2.11) are neglected.

0 and (2.46)

As a resuit of the first two assumptions the quasi-static motion becomes
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ÿl = 0
ox

"" 9x2 - 0

.d^w^ - cPiu*
^9x2 ' ^ dx2 “

with the following boundary conditions,

U^{0,t) - Ua{t) , = Ub{t)
=Va{t) , v'^{l,t) = Vb{t)

w'’(0,t) = Wa{t) , = Wb{t)

(2.47)

(2.48)

Introducing the third assumption (2.46) into the nonlinear strain-displacement 
relation Equ.(2.11), the strain induced by the quasi-static motion of the cable 
is reduced to its linear part :

„. . du^ dw‘ dw^
' <*•'>= aï--te

and the quasi-static stress reads

(t’ = Ee”

(2.49)

(2.50)
Expanding the partial differential équations (2.47) and introducing some con
stants of intégration (see section A.l) and assuming small displacements of the 
cable anchorages,

/«y ^ (2,51)

the quasi-static displacements are finally expressed in the form,

l

+ ^{ub- Ua)
X (X 4/x\3\1

[7 + t(t-'(7) +3(7) )J
u’(x,<) = Va + {Vb-Va)j

<7/ .X ,7 ^X EgUb-UaW'*{x,t) = Wa + {Wb-Wa)-r----- 7---- ;---- w^(x)

with the quasi-static stress,

a’ i
where Eg dénotés the effective modulus defined by Equ.(2.38).

(2.52)

(2.53)
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2.2.4 Dynamic motion

The purely dynamic motion (denoted by the superscript d) is expanded into 
the linear undamped modes of a cable with fixed ends. For small sag, the axial 
dynamic component can be neglected :

u^{x,t) ftiO (2.54)

We expand the transverse motion into the linear undamped modes according 
to,

n

t) = ^n{t)rpn{x) (2.55)
n

where the generalized coordinates, y„ and z„ are the amplitudes of out-of plane 
and in-plane modes respectively. The out-of-plane modes are independent of 
and given by,

4>n{x) = sin(-p) (2.56)

For small A^, the in-plane mode shapes, can be approximated by,

T77TT
ipn{x) a sin(-^) (2.57)

The global motion of the cable is obtained from the superposition of the quasi- 
static and modal motion as.

u{x, t) = u’(a;, t)
v{x,t) = v'^{x,t)+v'^{x,t) (2.58)
w{x, t) = (x, t) +w^{x, t)

2.2.5 Lagrange équations

In order to establish the analytical model of the cable, we use the Lagrange 
équations which, in this case, read

(2.59)
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Thus, the kinetic energy % and potential energy Vc should be expressed as func- 
tions of the generalized Lagrange coordinates and z„; the full development, 
is given in appendix A.

Kinetic Energy

The kinetic energy of the cable is,

T — ^pA f [ù^ + v'^ + w^] dx (2.60)
2 Jq

Strain-stress relation

The variable part of the axial strain in the cable e is composed of a purely quasi- 
static strain e, and a dynamical one Cd- Substituting the global components of 
motion Equ.(2.58) into the nonlinear strain-displacement relation Equ.(2.11), 
and using the assumptions Equ.(2.46), we obtain the axial strain

e{x,t) = Eq{x,t) + ed{x,t) (2.61)

where the dynamical component of the axial strain involves a linear and a non
linear term as follows

ed{x,t) =é-p{x,t) + £^^\x,t)

where the linear contribution is caused by the static profile

(1), . dw^ dw'^

and the nonlinear contribution is due to the cable stretching which is induced 
by both the quasi-static and the modal transverse motion of the cable.

(2.62)

(2.63)

£(2)
d (x,t) dw’’ dw‘^ 1 

dx dx ^ 2
dv‘^\^ ( dw‘^\^
dx J \ dx J

(2.64)

The axial stress in the cable contains a quasi-static contribution cr® and a dy- 
namic one as follows

a = Ee = Ecq + Esd = + cr^ (2.65)

Since the first équation of Equ.(2.45) shows that the dynamical axial stress is 
constant along the cable span, the dynamical strain is a fonction of time only; 
averaging e(x, t) over the cable span, we get

£{x,t)dx = £q(t) + £''^\t) + £^p{t) (2.66)
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The time-varying contribution of the axial tension in the cable is given by

T(t) = T^ + Td = EA Sq + e(1)d (2.67)

Potential Energy

The potential energy [22] of the cable is given by,

V, = V + V° + Vexf (2.68)

which contains the contribution of,

• the strain energy due to elastic élongation of the cable

V* = iEA{eo + ey (2.69)

where eq = %• dénotés the static strain. 

the gravitational potential energy

V° = — / Apg [(tu® +w'’ + w’^) cos 0 + a; sin 0] dx 
J O

• the potential due to external distributed forces

Vext = f Ay{v" + + v‘^)dx + ( AZ{w^ + w’’+ w'^)dx
J O J O

(2.70)

(2.71)

in which we hâve assumed that the longitudinal external distributed force 
A is negligible.

2.2.6 Analytical model of cable dynamics

The Lagrange équations (2.59) may now be used to dérivé the équations of 
motion of the small sag cable. Substituting the expressions of the kinetic en
ergy and the potential energy in the Lagrange équations (see section A.2) and 
assuming no transversal motion of the cable supports.

Va{t) = Vb{t) = 0
Wa{t) = Wb{t) = 0 (2.72)

we obtain the differential équations governing the generalized coordinates y„ 
and Zn for the cable mode n :
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l^cn {ÿn “1“ ^^yn^ni/n ^n2/n) “1“ ^nVni'^q “I" ^d) — ^yn (2.73)

Mcn (-^n "t" ^n^nÇ^q ^d)
H-AnTrf — Qcn(^6 ~ ^a) ” -^zn (2.74)

T-T,+Td = K{Ub - Ua) + ^ [hlnZn + /l2n {vl + 4)] (2-75)
n

where Fyn and Fzn represent the modal forces applied to the cable. In Equ.(2.75) 
hu = —J— is the static stiffness of the cable. The dynamical tension Td has a 
linear and a quadratic contribution; the former is due to the presence of cable 
sag and includes the in-plane symmetric modes only, because hi„ = 0 if n is 
even; the latter is due to cable stretching.
As compared to Equ.(2.73), Equ.(2.74) has two additional terms due to the sag:

• the sag induced stiffness A„Td has a linear and a quadratic contribu
tion; the linear one is responsible for the increase of the natural frequency 
of the cable in the vertical plane {ujzn = -I- A„hi„ > lj„).

• the sag induced inertia —acn{üb — üa) is the inertia force induced by 
the axial accélération of the supports. It affects the in-plane symmetric 
modes only because Ocn = 0 if n is even.

Moreover, the differential motion of the cable supports is also responsible of the 
parametric excitation through the terms 5„t/„r, and SnZnTq, which exist for 
both in-plane and out-of-plane modes.
If we expand the expressions of Td [see Equ.(2.75)] in Equ.(2.73) and (2.74), 
we notice that the nonlinearities of the cable dynamics appear through the 
quadratic and cubic couplings between modes and through the parametric exci
tation [18, 41]. Figure 2.9 summarizes the various types of interactions between 
the modes.
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Figure 2.9: Coupling between cable modes.



Chapter 3

Experimental validation of 
the cable model

3.1 Introduction

The aim of this chapter is to validate the analytical nonlinear model of a small 
sag cable with movable supports. For this purpose, a laboratory mock-up has 
been built; the vertical cable modes are excited through the axial motion of the 
anchor and through a vertical external force applied directly to the cable. The 
experimental results are compared with the numerical prédictions.
The efîect of the support displacement on the vertical motion is twofold : it is 
responsible for inertia forces exciting the cable, and it also produces a variable 
stiffness which is known as parametric excitation [41].
This chapter also discusses the properties of the control System with respect to 
the controllability and observability.

3.2 Experimental set-up

Figure 3.1 shows the experimental model of the cable. It is similar to that used 
by Fujino and coworkers [18,19]; it consists of a stainless Steel wire of 2.0 m long 
with a cross-section area of 0.196 mm^, provided with some additional lumped 
masses attached at regular intervals in order to achieve a représentative value 
of the cable mass to tension ratio The chord line is horizontal; the mass
per unit length is 0.057 kg/m; the Young modulus of the cable, measured from 
the stress-strain relation of the model, is 1.810^ MN/m. One end of the cable 
is fixed to a lever System in order to amplify the motion of the active element 
which consists of a linear piezoelectric actuator collocated with a force sensor 
(see Fig.3.2). The amplification ratio of the lever arm is 3.4, corresponding to

29
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Figure 3.1: Experimental model of the cable.

a maximum axial displacement of 150 pm for the moving support. A flexible 
tip is used to avoid bending moments in the piezoactuator. A picture of the 
actual device is shown in Fig.3.3. The axial motion is measured by a strain gauge 
included in the actuator. An electrodynamic shaker equipped with a force sensor 
is placed near the other end of the cable, to generate the in-plane excitation, and 
an optical System described later is installed as indicated in Fig.3.1, in order 
to measure the in-plane cable vibrations. The model was carefully designed 
to simulate the dynamic properties of typical cable stayed-bridges as shown in

Parameter Symbol Model Typical bridges

Cable static strain ,S _ O*
^ ~ E 0.2 % 0.2-0.4 %

cable weight 
tension

iL<7* 2% 0.1-1 %

Sag to span ratio d
l 0.5 % 0.01-0.5%

Table 3.1: Dynamic similarity parameters.
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Table 3.1. One notices that the first two parameters appearing in table 3.1 can 
be combinée! to form the parameter defined by Equ.(2.41).

Cable_
-4-

132 mm

ü

. _Piezoelectric
^ « A Actuator

L »-
0

\ Farce sensnr ___

m
...... '•

Figure 3.2: Design of the movable cable support mechanism.

Figure 3.3: Photograph of the movable cable support mechanism.

3.2.1 The active tendon

The actuator used in the experiment is a low voltage piezotranslator Physik 
Instrumente P-843.30 whose extension is a linear function of the applied electric 
field and of the applied load; this can be expressed by the following équation,
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Figure 3.4: Hystérésis curve of the piezotranslator P-843.30.

^ = (3.1)

where ô and ôj. are the effective and the desired expansion of the piezoactuator 
respectively, F is the force acting on it and K a is its stiffness. If fc/ is the 
géométrie amplification of the arm, Equ.(3.1) can be written as,

u = ki (3.2)

where u is the axial support displacement and T is the tension in the cable. 
Actually, the expansion of a piezotranslator is not exactly proportional to the 
electric field strength and the voltage/expansion curve exhibits some hystérésis 
as shown in Fig.3.4. The natural frequency of the actuator is about 10 kHz 
which is high enough for not interacting with the cable dynamics. A force 
sensor is mounted colinear with the piezoactuator; it consists of B & K type 
8200 with its charge amplifier B & K type 2635. The charge amplifier includes 
an adjustable band-pass filter. Note that, because of the high pass behaviour of 
the piezoelectric force sensor, it measures only the dynamic component of the 
tension in the cable.

3.2.2 Sensing cable vibrations

As shown on Fig.3.1, a sensor is used to monitor the cable vibrations and to 
evaluate the performances of the varions active tendon control algorithms.
In this context, a non contact optical measurement System for cable and string 
vibrations has been developed [2]. Cable vibrations can be measured through 
the variation of the tension in the cable; however, this signal includes a complex 
mixture of linear and quadratic terms [see Equ.(2.75)]; the former appears at
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expander

Figure 3.5: Sensing the vibration of a wire.

the natural frequency of the cable while the latter appears at twice the natural 
frequency; besides, the modes of even number are not linearly observable from 
the tension in the cable, because the corresponding coefficients /ii„ vanish in 
Equ.(2.75). A direct measurement of the cable displacement can be obtained 
with a CCD caméra [19] or with an analog position sensing detector (PSD) [31]. 
We hâve selected the PSD technology which supplies analog signais proportional 
to the position of a light spot on the detector. The technology exists in one or 
two dimensions; it is linear, wide-band, and perfectly adapted to the range of 
amplitudes of our application (typically cable vibrations of 10 mm).
The principle of the optical measurement System is represented in Fig.3.5; the 
light source is a 5 mW laser diode ILEE type LDA1015 (670nm); its beam is 
expanded into a flat parallel beam by two cylindrical lenses with focal length of 
25mm and 150mm respectively; the cable is placed in such a way that the chord 
line is normal to the light plane. The light plane produces a line on the PSD, 
with a dark spot corresponding to the shade of the cable (Fig.3.5). The analog 
output of the sensor is proportional to the position of the centroid of the dark 
spot. In order to improve the sensor signal, the PSD can be supplemented with 
a bandpass filter centered on the wavelength of the laser diode (670 nm in this 
case).



34 Chapter 3. Experimental validation of the cable model

3.3 Nonlinear oscillations of a cable

Consider the mass spring System subjected to an external force /. The response 
of the undamped System is governed by the linear équation

Mx + Kx — f (3-3)

For such a System, a small excitation cannot produce a large response unless the 
frequency of the excitation is close to the natural frequency of the System (i.e. 
primary résonance : w = yjKjM). If we modify the previous linear System

K
M

K'(u)

N

Figure 3.6: The parametric excitation of the mass spring System.

by adding a spring with a variable stiffness K* (u) controlled by the command 
U (see Fig.3.6), the équation governing the free response of the modified System 
becomes nonlinear and is changed into

Mx + Kx + K*{u)x = 0 (3.4)

We note that, the variable u can be used for exciting the System through the 
variable stiffness which appears as a time-varying coefficient in the governing dif- 
ferential équation (3.4). This type of excitation is called parametric excitation 
[41]. By contrast with the case of external excitation (e.g. for the linear mass 
spring System), a small parametric excitation can produce a large response when 
the frequency of excitation is away from the primary résonance, usually equal 
to twice the primary résonance (parametric résonance : 2w). As an example of 
parametrically excited System, Fig.3.7 describes the nonlinear model of a tant 
string excited through an axially movable support, and the gravity effect on the 
dynamics of a cable; the équations governing the dynamics of each System are 
also shown.
Figure 3.7.a compares the linear and nonlinear one d.o.f. model of a tant string 
stretched between its fixed supports points with a static tension Tq. In addition 
to the linear part, we note the presence of a cubic nonlinearity as a resuit of the 
stretching. Furthermore, if we consider the same taut string subjected to an 
axially movable support as shown in Fig.3.7.b, we notice a parametric excita
tion term (i.e. a variable stiffness) induced by the axial motion of the support, 
which excites the System when the frequency of the support motion is twice the 
primary résonance (2a;).
Now, consider the previous System in which the string is replaced by a cable
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Figure 3.7: Model of a string and a cable with an axially movable support.
(a) String with fixed support.
(b) String with axially moving support.
(c) Cable with small sag and axially moving support.

with small sag, as shown in Fig.3.7.c. The cable vibration is composed of two 
motions ; one lying in the plane defined by the cable equilibrium (i.e. gravity 
plane) and one normal to this plane; the équation is written for one mode only. 
The presence of sag introduces two additional contributions : The sag induced 
inertia corresponds to an external excitation which affects the vertical sym- 
metric modes only; this term becomes dominant in the vicinity of the primary 
résonance. There are also some additional linear and quadratic coupling terms 
due to sag; the magnitude of their coefficients dépends on the cable sag and they 
vanish for antisymmetric in-plane modes. Thus, if we consider the excitation of 
a small sag cable through the axial movement of the cable support, two types 
of excitation do exist : an external force excitation and a parametric one : •

• The symmetric in-plane modes can be excited through the sag induced 
inertia if the frequency of the support displacement is close to the primary 
résonance of the considered mode.
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• Ail transverse modes (i.e. in-plane and out-of-plane modes) can be para- 
metrically excited, when the frequency of the support movement is close to 
the parametric résonance (i.e. twice the primaxy résonance) of the mode 
concerned. In this range of frequencies, the sag induced inertia does not 
modify the frequency response and then can be assumed negligible.

Next, consider the effect of the two foregoing types of excitation on the first 
vertical symmetric mode of a small sag cable. In this case, neglecting the modal 
coupling and adding some damping, the équation governing the vertical cable 
mode Equ.(2.74) becomes

Zn ^^zn^zn^n "b ^zn^^ "b /?n^n "b l^n^n "b ~ 0 (^'^)
f^cn

with

— Snh2n ) 0n — "t" ^n^2n)
f^cn

= u\-\-------, Rn = -----------------Snhxi (3.6)
f^cn f^cn

The équation governing Systems with cubic nonlinearities is known as the Duff- 
ing équation [41]. The main characteristics of such Systems are as follows :

• The frequency response may exhibit two different values at the same fre
quency.

• The bending of the frequency response curve is responsible of a jump 
phenomenon as shown in Fig.3.8 and 3.9. We observe that when the 
frequency is increased the response follows the upper branch and sud- 
denly jumps down to the lower branch. Conversely, when the frequency 
is decreased from large values the response follows the lower branch and 
suddenly jumps up to the upper branch.

• The cubic nonlinearity may induce an internai résonance (i.e. sub-harmo- 
nic résonance) which occurs at one third of the primary résonance for large 
amplitudes of the response. This phenomenon has never been observed in 
this work.

3.3.1 Cubic and quadratic nonlinearities

The aim of this section is to validate the presence of cubic nonlinearities in the 
équation governing the cable vibration. For this purpose the sag induced inertia 
excitation is considered. As previously discussed, for this type of excitation, only
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Figure 3.8: Prequency response function between the active tendon displacement 
and the in-plane vibration, at the primary résonance uizi.

the symmetric in-plane modes are excited, and the variable stifFness term (i.e 
parametric excitation component) can be neglected :

-, 2 , O 2. 3 .. Pun -rs
Zn "b ^^zn^zn^n ~b ^zn^'n "b Pn^n “b — h — (3*7)

f^cn f^cn

where Fun represents the excitation force applied to the in-plane mode in- 
duced by the support accélération ü. When, a harmonie displacement at fre- 
quency fî is applied to the actuator, the modal excitation force becomes,

Fun = 0!cn^^u(t) = acn^^ciu sin fit (3.8)

An analytical prédiction of the steady State response of Equ.(3.7) can be made 
using the method of multiple seules [41] (see appendix B.l). The frequency 
response équation in the vicinity of the primary résonance u>zn reads,

■fi - Uzn
U ” UulJ

/ OCenf^u^ \ ^2
\2pcnazn(^ln)

(3.9)

where Ozn is the response amplitude, Ou is the amplitude of the axial motion 
and n is the excitation frequency.
The résonance curve bends to the right or to the left depending on the relative 
size of coefficients of quadratic (/3„) and cubic (i^n) nonlinearities. For small 
sag cable investigated here, the frequency response curve bends to the right 
(hardening nonlinearity), because t'n /?„. The bending of the frequency
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Parameters Value
Mci (kg) 0.053
To (N) 32.6
îzi = Wji/27t (Hz) 6.4
U (%) 0.12
A2 0.8
5i 2.46
Al 0.02
«cl (kg) 0.159
hu (Nm~^) 1.188 lO'»
hii (Nm“^) 257.2
/i2i (Nm"2) 1.56 10^
/3i (Nm“2) 952
j^i ( Nm-3) 3.86 10^

Table 3.2: Coefficients used for the analytical prédictions.

response curve leads to multivalued amplitudes (i.e. more than one stable steady 
State response) and hence to a jump phenomenon [41].
Experiments hâve been performed with the set-up of Fig.3.1. The input excita
tion is a slow sine sweep and each point corresponds to a steady State harmonie 
excitation of 3 min. The theoretical coefficients and parameters used for solving 
the predicted frequency response équation are summarized in Table 3.2. The 
damping ratio has been obtained from an experimental identification and 
the static tension applied to the cable is known initially; the other coefficients 
are calculated from their theoretical expression [Equ.(3.6), (A.32) to (A.40)]. 
The amplitude a„ of the moving support is approximately equal to 4.25 /im. 
Figure 3.8 shows the good agreement between the experimental frequency re
sponse curve and the prédiction (3.9) in the vicinity of the primary résonance

3.3.2 Parametric excitation

When the frequency of the cable support is close to the parametric résonance, 
the sag induced inertia can be neglected and Equ.(3.5) is reduced to the para- 
metrically excited Duffing équation [41]

Zn "H "b ^zn^n "b Pn^n "b l^n^n "b RnZnU — 0 (3.10)

When a harmonie signal at a frequency ü in the range of 2w^„ is applied to 
the actuator, the analytical prédiction of the steady State response around the 
parametric résonance is, here again, obtained using the method of multiple scales 
(see appendix B.1.2); we obtain
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Figure 3.9: Frequency response function between the active tendon displacement 
and the in-plane vibration at the parametric résonance 2uJzi. P2 and P3 indicate 
the predicted jump points, while Jl, J2 and J3 indicate the experimental ones.

N (3.11)

where a^n is the response amplitude and a„ is the amplitude of the axial dis
placement of the support. One notices that the steady State solution exists only 
if the amplitude a„ of the excitation is greater than a critical value :

Qu >
Rn

(3.12)

If this condition is satisfied, one or two steady State solutions of Equ.(3.11) are 
possible; only one of them is stable and can be observed in experiments, as we 
shall see below.
Experiments hâve been conducted on the same cable test article. The amplitude 
of the cable moving support a„ is 7 fim. Figure 3.9 shows the comparison 
between the experimental frequency response curve and the prédiction (3.11) 
around the parametric résonance 2u>zi (2fzi - 12.8 Hz). Note that when the 
frequency is increased from small values, beyond point JO the amplitude of 
vertical motion of the cable rises and a downwards jump occurs at point Jl. 
The stability of the parametrically excited DulBng équation [41] is addressed in 
Appendix B.1.2; it is shown that the lower branch of the predicted frequency 
response (in dashed line on Fig.3.9) is unstable. When the frequency decreases 
from a large value, we note that upon reaching point P2 the trivial solution 
becomes unstable and there is a jump up to point P3 which is experimentally 
observed in Fig.3.9 Qunip up from J2 to J3).
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Figure 3.10: Prequency response function between the active tendon displace
ment U and the amplitude z of the in-plane vibration.

3.4 Open-loop control System

The aim of this section is to assess the open-loop properties of the control System, 
in particular with respect to the controllability and the observability. To this 
end, experimental frequency response functions hâve been measured over the 
whole frequency range, using a white noise source. The static tension in the 
cable is in this case Tq = 25 N.

3.4.1 Controllabilty

Figure 3.10 shows the linear frequency response function between the displace
ment U of the active tendon and the amplitude of the in-plane vibration z of 
the cable (measured with the optical sensor). Ail the modes of odd number 
(symmetric modes) are excited through the induced sag inertia, whereas the 
modes of even number (antisymmetric modes) are not excited because the cor- 
responding coefficients Qcn vanish.
The contributions at 2uzi and at 2lJz2 correspond to the parametric résonance. 
One observes that the parametric résonance of mode 2 is much more pronounced 
than that of mode 1; this remark is theoretically predicted by Equ.(3.11).

3.4.2 Observability

In order to verify experimentally the observability properties in the active ten
don, a forced excitation is applied to the vertical cable modes, using a shaker 
as indicated in Fig.3.1. Figure 3.11.a shows the frequency response function 
between the shaker force Fj„ and the amplitude of the in-plane vibration z. 
As expected from Equ.(2.74), ail in-plane modes z contribute to the response. 
Figure 3.11.b shows the frequency response function between the shaker force
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Figure 3.11: Prequency response function between
(a) the shaker force Fi„ and the amplitude z of the in-plane vibration.
(b) the shaker force and the tension T in the cable.

and the tension in the cable T. Note that mode 2 appears only through the 
quadratic term at 2uJz2, because the coefficients /ii„ = 0 forn even in Equ.(2.75). 
By contrast, mode 1 appears at with the linear term and at 2wzi with the 
quadratic term in Equ.(2.75).
Modes 3 and 5 are also observable from the cable tension, although less than 
mode 1, as we can expect from the analytical form of hi„ (w n~^). The anti- 
symmetric in-plane modes and ail the out-of-plane modes are observable only 
for very large amplitudes, because they contribute to the cable tension through 
the quadratic terms and z^.

3.4.3 Open-loop transfer function

Figure 3.12 shows the frequency response between the active tendon displace
ment U and the tension T in the cable (i.e. open-loop transfer function of the 
control System). We see that it is dominated by the first mode and that there 
is a transmission zéro right before lj^i. We observe that the contribution of the 
third vertical mode at is substantially smaller, which confirms the previous
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Frequency (Hz)

Figure 3.12: Frequency response function between the active tendon displace
ment U and the tension T in the cable.

remark concerning the observability and controllability of high order symmetric 
in-plane modes.
Figure 3.13 shows the frequency response fonctions obtained from numerical 
simulations using the nonlinear model described by Equ.(2.73) to (2.75), im- 
plemented in a specially written C-M- program. Most of the features observed 
in the experimental frequency response fonctions can also be observed in the 
simulated ones.
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Frequency (Hz)

Figure 3.13: Numerical Frequency response function between
(a) the active tendon displacement u and the in-plane vibration z.
(b) the active tendon displacement u and the tension T in the cable.
(c) the shaker force Fin and the amplitude z of the in-plane vibration.
(d) the shaker force Fi„ and the tension T in the cable.



Chapter 4

Active damping of a cable

4.1 Introduction

Over the last decade, there has been a growing interest in the active control 
of string and cable vibration. The problem is difficult because of the highly 
nonlinear behaviour of strings and cables with sag. The control methods used 
to suppress the vibration of such nonlinear Systems can be separated in three 
classes, depending on the actuator operating mode :

(i) transverse point force

{il) transverse support motion

{iii) axial support motion (tendon control)

The first class is illustrated in Fig.4.1.a. In the theoretical study of Yamagushi 
et al. [71], a wave control approach is used to damp the vibration of a cable 
with sag. From a practical point of view, the control forces applied transversally 
to the cable are responsible of localized bending stresses and thus might lead to 
fatigue problems. Moreover, this type of control is difficult to implement; and 
the choice of the actuators and sensors is of considérable difficulty with respect 
to a good observability and controllability.
The second class is illustrated in Fig.4.1.b. In a recent work [32], Lee and 
Mote apply a transversal boundary control technique to control the transverse 
vibration of a translating string; a time optimal controller for the maximum 
energy dissipation of the string is determined by minimizing the energy of waves 
reflected from the boundary. Furthermore, transversal boundary control can 
be implemented not only by active control such as a direct velocity feedback, 
but also through a passive design using a damping mechanism as indicated in 
Fig.4.1.c [32, 72].
The third class (active tendon control with an axially movable support) has

44
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Figure 4.1: Possible control strategies for the transverse vibration of cables and 
strings.

been studied by Fujino and coworkers. They demonstrated [18] that the in- 
plane vertical cable vibration can be controlled by sag induced forces (Fig.4.1.d) 
and that sag induced control is very efficient for the first in-plane mode, even 
for very small values of the sag to span ratio {d/l < 0.5%). Sag induced forces 
do not affect the out-of-plane vibration of the cable which behaves like a tant 
string. Chen [10] showed theoretically on a string that the out-of plane vibration 
can also be controlled by the longitudinal motion of the support at a frequency 
equal to twice the frequency of the trans verse vibration of the string, making a 
positive use of the parametric excitation. This stiffness control algorithm has 
been tested by Fujino and coworkers [19] on a cable-structure System (Fig.4.1.e). 
AU the control strategies based on a non-collocated actuator-sensor pairs for 
the local in-plane and out-of-plane cable modes must rely on a simplified model 
and, as a resuit, are prone to spillover : Control spillover arises from the control 
variable u exciting the higher order modes in addition to the targeted one. 
Observation spillover results from the contamination of the sensor signal by 
contributions from the higher order modes. It is well known that when both 
control and observation spillover exist, they can resuit in spillover instability 
[5].
This chapter will first review the existing control strategies of active tendon
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control of a cable; next, an alternative control strategy based on a force sensor 
collocated with the active tendon is proposed. Some experiments are conducted 
on our laboratory mock-up and the results axe compared with the prédictions.

4.2 Control efficiency

An energy analysis is conducted to evaluate the control efficiency [19]. For sim- 
plicity, let us assume that the in-plane transverse vibration with active control, 
Zn, is harmonie with frequency Qzn which is close to the undamped natural 
frequency, « <^zn,

Zn = ClznCOS{uJznt) (4.1)

We define the energy dissipation as the intégral over one cycle, r„ = W2„/27r, of 
the product of the generalized velocity and the generalized damping force. For 
a linear oscillator.

{zji + ^^zn^znZn d" — 0 (4-2)

The energy dissipation due to inhérent damping can be written as.

Ep {^Tflzn^zn^znZrt^ — / {^'^zn^zn^znZnl Zjidt
Jo

— 27r?7l2;n^2n il^zn^zn) (4-3)

Returning to the cable System, the difîerential motion of the cable support u{t) 
créâtes two basic effects as seen in chapter 2:

• Active sag induced force (—ac„ü); this term is due to the presence of sag 
in the cable, and exists for the in-plane symmetric modes only. •

• Active stiffness variation Rnuyn and RnUZn, where is given by 
Equ.(3.6).

The energy dissipation due to the sag induced force is,

Ep ( OCcjiÜ^ — / ( CTcnÜ) Zjidt — CTcn / ÜZfidt (4.4)
Jo Jo

The équivalent linear damping is obtained by comparing Equ.(4.4) with the 
corresponding équation for the linear oscillator (4.3); we get

rai _ ~^P i~^cnÜ)

2nmzn {j^znaznŸ
The energy dissipation due to active stiffness control is similarly.

(4.5)
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Ep {^RjiZfiU) — f Zfidt — Rji
Jo

Following the same procedure, the équivalent linear damping due to active 
stiffness force is obtained by comparing Equ.(4.6) with Equ.(4.3); we obtain

f UZnZ'ndt (4.6)

Ep i^RfiZnU)
‘l’KTn^n (.OJznO'zn)

(4.7)

Similarly, for the out-of plane motion, the energy dissipation due to active stiff
ness control reads

Ep i^Rnyn'^^ — j {RnUn'^') Vridt
Jo

— I ’^ynVndt 
Jo

which yields the équivalent linear damping

as _
yn ~

Ep (72n2/n^)
^TTTnyji (^UlynO'yn)

(4.8)

(4.9)

4.3 Existing control strategies

4.3.1 Active sag induced inertia

The control law proposed in [18] consists of a proportional feedback of the modal 
velocity (assumed available) :

u{t) = —Zn (4.10)
<^zn

where g is the control gain. This control acts essentially at the primary réso
nance. Following the procedure to estimate the control efficiency, one finds that 
the energy due to stiffness control vanishes; the energy dissipation due to sag 
induced inertia can be evaluated by introducing Equ.(4.10) in Equ.(4.4); we find 
easily

Ejp{^ CHcn^) — ^cnQ"^ i^zn^zn) (d-11)

and the équivalent damping ratio, Equ.(4.5), is

____ 1 l + (-l)"+^
+ nTT

(4.12)

where n is the order of the mode, £o is the static strain in the cable, and is 
the Irvine parameter, related to the static strain and the sag to span ratio d/l 
by Equ.(2.22).
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We note that the control law is the most effective for the first symmetric in- 
plane mode and is a linear function of the control gain. This controller has been 
tested experimentally {d/l s»0.5% and a„ < 80 pm). In the experimental set-up 
of Fujino [18], a CCD caméra is used to track the modal in-plane displacement, 
which is filtered in order to extract the modal velocity; in our experiment the 
same filtering process is applied to the signal of the optical sensor described in 
section 3.2.2. A damping ratio of about «1 % has been achieved for the first 
symmetric in-plane mode.

4.3.2 Active stiffness control

Chen’s controller

The stiffness control was first proposed by Chen [10] to suppress the vibration 
of a taut string; the modal control law is based on the measurement of the 
transverse modal displacement y„ and velocity ÿnl the proposed feedback for 
the axial support displacement is

u{t) = -^^ (4.13)
^yn |î/n|

This control acts essentially at the parametric résonance (2ujyn); if one substi- 
tutes y„ = Oj,n cos(wynf), we get g = a„/ayn. Upon substituting this control 
law in Equ.(4.8), we find after some algebra

4
Ep {RnynU) = ~'^gRn‘^yn0^n (4-14)

Hence, the équivalent damping ratio due to active stiffness force [Equ.(4.9)], 
becomes

ras
^yn

J_ 1 a„ 
37T £o 1 -I- ^ I

(4.15)

where a„ is the amplitude of the support displacement, £q dénotés the static 
strain in the cable and is given by Equ.(2.22).
Similarly, the control law Equ.(4.13) can be applied to the the in-plane motion 
by sensing the vertical modal displacement and velocity coordinates z„ and i„; 
in this case the équivalent damping reads

with

OS __
zn

21 1 1 g„
37T ^0 1 -f- ^ I

Kji — 1 -|-
4A^

(utt)4(l + (-l)n+1 1

(4.16)

(4.17)
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We note that the efRciency of this stiffness control is an increasing function 
of the actuator amplitude. Its application to our laboratory mock-up {d/l » 
0.5 %) shows that for small amplitudes of the support displacement (a„ < 
80 /xm), a damping ratio of = 0.5 % for the first vertical cable mode is 
predicted by the numerical simulations and corresponds to the value predicted 
by Equ.(4.16). However, its practical implémentation on the experimental Set
up is inconvénient and leads to spillover instability.

Onoda’s controller

The stiffness control law used by Onoda [45, 46] is a nonlinear saturation con
troller; the out-of-plane vibration is controlled by

f au if 2/n2/n > 0
\ -au if VriVu < 0

(4.18)

Following the same process, and after some algebra, one finds that the energy 
dissipation due to the stiffness control force is

Ep {EnUnO) —

and the équivalent damping ratio Equ.(4.9) reads

pas _ _ Çyn _
1 1 1
TT £0 1 -b yI I

(4.19)

(4.20)

As above, this resuit can be transposed to the vertical motion but the presence 
of a sag induced inertia excites other symmetric modes leading to spillover 
problems. A multimodal control has also been proposed by the same author, 
but its application to a tant string shows that spillover instability occurs [46].

Fujino’s controller

The stiffness control law proposed by Fujino and coworkers is based on Chen’s 
controller; the actuator displacement is related to the measurement of the cable 
mode amplitudes by a nonlinear continuons function :

u{t) = a„ 2 ynUn
Vn + J!n_

Wyn
Substituting Equ.(4.21) in Equ.(4.8), we get

(4.21)

Ep {RuVriu) = - ^Rnaualn (4.22)

Thus, the additional damping ratio for the out-of-plane mode Equ.(4.9), is
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Similarly, for the in-plane mode, the équivalent damping Equ.(4.7) reads

11 1 1 g„

4 £q 1 + ^ I
(4.24)

This stiffness control law does not produce any energy dissipation due to sag 
induced inertia so that = 0. Equation (4.23) and (4.24) show that the 
stiffnesss control is efficient for large amplitudes of the actuator. The control 
algorithm has been tested in simulation using the cable model Equ.(2.73) to 
(2.75), and experimentally. A damping ratio below 1 % has been obtained for 
an amplitude = 70 ^m, which reflects both the predicted value given by 
Equ.(4.24) and the results obtained by simulation.
For multimodal Systems, the controller is based on the reconstructed modal 
States z„ and i„ from the vertical displacement measurement of the cable (i.e. 
with the optical sensor) and it may lead to spillover instability. This instability 
is observed when the cable is connected to a structure.

Multimodal control

A bilinear control theory based on the direct method of Liapunov has been 
used to control multimodal cable vibration [64]. In principle, if ail the States 
are available, the control algorithm guarantees a réduction of the energy in the 
cable System. However, it relies on the knowledge of the State vector, and when 
applied with an observer, the stability properties are lost.
A stiffness control algorithm based on a bilinear observer and a quadratic feed
back from a single sensor to a parametric actuator can be applied to suppress the 
transverse vibration of a string [57]. The applicability of this stiffness control 
has been demonstrated on a pinned and clamped beam experiment; however 
spillover instability is observed in certain conditions depending on the System 
parameters.

4.4 Intégral Force Feedback controller

4.4.1 Energy absorbing control

It is widely accepted that the active damping of linear structures is much sim- 
plified if one uses collocated actuator and sensor pairs [8]. This is because the 
pôles and zéros alternate near the imaginary axis. For such configurations, a 
wide class of controllers can be developed using positivity concepts [6]. For 
non-linear structures, the use of collocated actuator-sensor pairs is still quite 
attractive, because it is possible to develop control schemes which are guaran- 
teed to be energy absorbing, assuming perfect actuator and sensor dynamics. 
First, consider the configuration of Fig.4.2.a : the actuator produces a point 
force and the collocated sensor measures the velocity. The power flow from the
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(a) Velocity feedback (b) Force feedback

Figure 4.2: Energy absorbing control.

control System is W = Fù . Any control law rendering W négative will be 
stabilizing, because if we take the total energy E (potential + kinetics) of the 
vibrating structure as a Liapunov function, we hâve È = W. VF < 0 can be 
achieved by the feedback law,

F = -gù ^ -gü^ {g > 0) (4.25)

This well known scheme is called Direct Velocity Feedback. A nonlinear alter
native feedback law is,

F = —Fosign{u) => W = —Fo|û| (-Pb > 0) (4-26)

This ” bang-bang” control produces a faster decay, but it can lead to chattering 
near the equilibrium.
Next, consider the dual situation (Fig.4.2.b) where the actuator Controls the 
relative position u of two points inside the structure (e.g. piezoelectric linear 
actuator) and the sensor output is the force T in the active member {T is 
collocated with u). As before, È = W = —Tù and it is readily verified that the 
positive Intégral Force Feedback (IFF),

u = g jTdt ^ W = -gT"^ {g > 0) (4.27)

produces an energy absorbing control. Intégral force feedback on piezoelectric 
actuators has already been applied successfully to the control of truss structures 
[56].
From the foregoing discussion, we can anticipate that the intégral force feed
back will be effective in damping the local in-plane mode of the cable. Moreover, 
this will be achieved without threat of spillover instability, provided that the 
actuator and sensor dynamics are good enough. Force feedback cannot be used
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for damping the out-of-plane modes, because these modes are weakly observ
able from the force sensor. The in-plane vibration of a cable with small sag is 
considered in the next section.

4.4.2 Control law

The proposed control law is the Intégral Force Feedback,

i{t) = g [ T{T)dr 
JQ

(4.28)

Upon substituting the dynamical component of the tension in the cable T from 
Equ.(2.75) and introducing = Oj„ cos(o;j„t) in Equ.(4.4), we find, after some 
algebra, that the energy dissipation due to the sag induced force reads

Ep ( CXcnÜ) — TTClcn {(^zn^zn)
1-1- (f^)

(4.29)

The équivalent damping ratio given by Equ.(4.5) is

sAa.cat _ 
Szn (n7r)‘

(l + (-l)"+')An+l\ \2 U,

1 +
(4.30)

Similarly, the energy dissipation due to active stiffness control is

and the corresponding damping ratio reads

4c.»,„

1 + J
(4.31)

--(riTr)^ 1 1 + TTC
1 2o,n

S V

Following the same process for the out-of-plane motion we find

(4.32)

cas _ 1 1 I ^ ^ (4.33)

The maximum value of the sag induced damping is obtained when 
ghu/u>zn = 1; for this particulax value, we hâve

=Szn (nrr)'
(l + (-l)"+^) (4.34)
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Figure 4.3: Dumping ratio of the first out-of-plane mode due to stiffness control 
{d/l = 0.3%).

On the other hand, the maximum dumping due to the stiffness control is 
achieved when gh^/ijJzn = 2; we obtain,

1 1 1 o„
S ^0 1 d" ^ 1

(4.35)

We note that the dumping due to the sag induced inertia dépends heavily on 
the parameter and that it is reduced drastically as the order of the mode 
increases (as n~^), so that in practice, only the first symmetric vertical mode is 
damped effectively. For small amplitudes of the actuator (here a„ « 70/im), the 
sag induced dumping dominâtes for the symmetric in-plane modes,
For the out-of-plane motion the optimal dumping ratio is again obtained when 
gKl^yn = 2 :

.as _ \/2 1 1 Ou
8 £0 1 + ^ /

(4.36)

Notice that the Intégral Force Feedback extracts energy from both sag induced 
inertia forces and stiffness control forces; this is why it works also for the trans
verse vibration of a string, provided however, that the actuator amplitudes are 
large.
Figure 4.3 compares the dumping ratio obtained with the Integra! Force 
Feedback for the first out-of-plane mode, with those obtained with the varions 
stiffness control strategies discussed earlier.
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Figure 4.4: Influence of on the maximum sag induced damping with the 
Intégral Force Feedback.

4.4.3 Implémentation, experimental results
In the practical implémentation of the intégral force feedback, because of the 
high-pass behaviour of the force sensor, only the dynamic component of the 
tension in the cable is considered; in addition to that a forgetting factor is 
applied to prevent saturation [54], The intégral control law

(4.37)
s

can readily be transformed into a différence équation using the bilinear trans- 
form [16]; this leads to

Uj+i — Ui + ÿ—(Tj+i + Ti) (4.38)

where At is the sampling period. We easily recognize the trapezoid rule for 
intégration. In order to avoid saturation, it is wise to slightly modify this 
relation according to

Ui+i — aui + g—(Tj+i + Ti) (4.39)

where a is a forgetting factor slightly lower than 1. a dépends on the sampling 
frequency; it can either be tuned experimentally or obtained from a modified 
compensator

U = -^T (4.40)
s + a

where the breakpoint frequency a is small compared to the frequency of the first 
controlled mode of the System, in order to produce a phase shift of 90° at .
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Gain g

Figure 4.5: Active damping with Intégral Force Feedback {d/l=0.5 %).

The maximum achievable damping ratio ^zi = ~ izi plotted as
a function of in Fig.4.4; the experimental results confirm the trend of the 
prédictions of Equ.(4.34) and the results obtained with the numerical simulation 
of the cable model [Equ.(2.73) to (2.75)].
Figure 4.5 compares the numerical and experimental values of as a function 
of the control gain. The discrepancy between the simulations and the experi- 
ments is attributed to the flexibility of the lever System; it is explained in details 
in chapter 6. Note that the drop of the active damping coefficient for large gains 
is observed experimentally. Note also that the experimental values of are at 
least as good as other previously published results [18] for comparable values of 
djl. The présent control law, however, has the advantage that it is not subject 
to spillover.
Figure 4.6 shows experimental results for the tension in the cable and the trans
verse displacement during the free response from non-zero initial conditions, 
with and without control. The sudden change in the cable tension when the 
control is switched on is due to the feedthrough component hu{ub — Ug) in 
Equ.(2.75).
Varions experiments hâve been conducted with other control laws; Figure 4.7 
shows the time response obtained with a P minus I controller (combined with a 
low-pass filter with cut-off frequency near Uc = 100 Hz). Although a very large 
damping ratio can be achieved for the first mode {^zi > 10 % !), this control law 
has been found destabilizing for higher modes in the experimental set-up; it is 
not recommended because it is violently unstable when the cable is connected 
to a flexible structure, as discussed in the next chapter.
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Figure 4.6: Pree oscillations with Intégral Force Feedback {d/1=0.5 %).
(a) Dynamic component of the cable tension.
(b) In-plane displacement.
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Figure 4.7: Pree oscillations with P minus I {df 1—0.5 %).
(a) Dynamic component of the cable tension.
(b) In-plane displacement.



Chapter 5

Cable Structure Model

5.1 Introduction

Consider the cable structure of Fig.5.1, consisting of a linear structure (here a 
truss) with a number of nodes interconnected with cables. As an alternative 
to a general nonlinear finite element approach which would be extremely time 
consuming, especially for control System design purposes, we bave developed a 
dedicated software which combines a finite element model of the linear structure 
with an analytical model of the cables in modal coordinates.

Figure 5.1: Cable structure model.

58
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This model is an extension of that of the cable with movable supports, 
Equ.(2.73) to (2.75); the model of each cable is written in a local coordinate 
System as indicated in Fig.5.1; the local x axis is taken along the chord line while 
the Z axis is in the gravity plane (it is arbitrary in a zero-gravity environment). 
The governing équations resuit from Lagrange’s équations, using the modal 
amplitudes as generalized coordinates and a nonlinear strain-displacement rela- 
tionship as discussed in chapter 2; their development follows and the analytical 
expressions of the varions constants are given in appendix C.

5.2 Energy partition in the structure

The motion of the structure is expressed in the global coordinate System (XVZ) 
as indicated in Fig.5.1. The potential energy of the prestressed structure is

V, = Kx (5.1)

where the stiffness matrix K results from the contribution of the linear stiffness 
and the géométrie stiffness due to the prestresses induced by the dead load and 
the static tension applied by the cables; x is the vector of degrees of freedom of 
the structure.
The kinetic energy is

Ts = ^x Mx (5.2)

where M represents the mass matrix of the structure.

5.3 Energy partition in the cable

Consider the cable structure where each cable (i) is anchored at the structure 
nodes a and b as indicated in Fig.5.1; the superscript i refers to the cable number. 
As previously seen in chapter 2, the modal motion of each cable is written in its 
local coordinate System (xyzy. Each cable is provided with an active tendon 
placed at one end (say a in Fig.5.1); the longitudinal displacement at the anchor 
node a results from the contribution of the longitudinal component induced 
by the structure movement and the contribution of the actuator stroke u*; so 
that the longitudinal differential motion of each cable is u\ — u\ — u'.
The relative displacement components of the structure nodes a and b (U^y^yVl) 
and (Uiy^,Wl) expressed in the global structure coordinates (XYZ) can be 
written in terms of the structure degrees of freedom as

[ulvlwif =

(UlViMŸ = L\x

(5.3)

(5.4)
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where and represent the localisation matrices of the structure nodes a
and b. If = (7^t ,^1 ,ni) is the rotation matrix which transforms the 
structure displacements from the global to the local coordinate System, we hâve

{ulvlwif = TV = TVÙa^ (5.5)
and

{ulvlwlf = Wif = TVL\x (5.6)

5.3.1 Kinetic energy

For each cable, the kinetic energy can be expressed in terms of the structure 
degrees of freedom x and the actuator stroke u* by replacing by + u’ and 
by substituting Equ.(5.5) and (5.6) in Equ.(A.6); after some algebra, we get

+ x'^G'J'ÿ' + x^G'^V - x^G'JV
T = ........................................................... (5.7)

+ + a'^ z'ii' + f]J'xù' +

where y* = {y\ y^ - ■ ■ yh)^ and z'’ = {z{ z^-- ■ dénoté the vectors of out- 
of-plane and in-plane cable modes respectively; p], is the matrix of the modal 
masses. The matrices Gy and G* refer to the interaction between the transverse 
motion of the cable (out-of-plane and in-plane respectively) and the structure 
movement; while Gû refers to the interaction between the in-plane cable vi
bration and the axial movement of the cable support induced by the structure 
vibration. Their analytical expressions, as well as the one of mj,, the vector a* 
and the matrix are given in appendix C.

5.3.2 Potential energy

The potential energy of each cable [Equ.(A.20)] is.

V _ y.t ^ yot ^ yt

2E a

Ù 9 Z
(r‘ + T‘)"- ________rptrp

EiAi °

12 £;« 
+vr -I- VI

+T5§^o [T^u {Li - Li)x - u‘] - {Li + L‘jx(5.8)

ext

where Tq is the static component of the cable tension and T* is the dynamical 
component given by [Equ.(A.14)j

r = T* + T,*, -I- -I- rf
where the contributions are respectively

(5.9)



5.4. Governing équations 61

• the quasi-static tension due to the actuator stroke

T* = -/i>‘ (5.10)

• the quasi-static tension due to the longitudinal differential motion of the 
cable supports anchored at the structure nodes a and b

Tis = Kiui - K) = hiTZ^(Li - L\)x (5.11)

• the component due to the modal motion of the cable

T^i _ Tn(l)* 1 0^(2)»
■‘d — -'d + -'d = z' -h 2/*-' h\y' -I- ZiTi JTh\z'

T‘ d- T'
rpi
-^0

h^z' (5.12)

5.4 Governing équations

The total kinetic and potential energy of the cable structure are

ric
7" = Ç Tcable

i

V = Vs + f2vi,bu (5.13)
i

where Uc represents the number of cables. Upon substituting Equ.(5.2) and 
(5.7) into Equ.(5.13), we can neglect the kinetic energy resulting from the cable 
supports motion Mx. Applying the Lagrange équation to
the cable structure System one finds that the équations governing the modal 
motion of the cables are

dt Vay ) ^ dy' 

dt \dZ ) ^ dz'

and that governing the motion of the structure reads

(5.14)

L
dt

(5.15)

Substituting Equ.(5.1), (5.2), (5.7), and (5.8) in Equ.(5.13), introducing the 
resuit in Equ.(5.14) and adding some modal dumping and we obtain the 
équations governing the vector of generalized coordinates y* and z* of the cable.
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p[ [f + 24ü‘ÿ‘ + n*2yi) + s'y\Tl + Tl + Ti) + G\x = (5.16)

/X* (F + 2^‘n‘i‘ + n*2^‘) + S'z\Ti + Tl + T\) + G\x

+A*ri - G^ï + q‘ü* =Fi (5.17)

Compared to the previous model of a cable Equ.(2.73) to (2.75), the équations 
governing the transverse motion of the cable contains two additional terms due 
to the seismic excitation produced by the trernsverse accélération of the cable 
supports, GyX and G\x, which was ignored in the cable model of chapter 2. The 
longitudinal motion of the supports is responsible of a sag induced inertia force 
—GJjï and also contributes to the quasi-static tension T*, [Equ.(5.11)] which 
is responsible of the parametric excitation terms for both the out-of-plane and 
the in-plane cable modes {S'Tly* and S'Tlz* where the constant matrix 5* 
is defined in appendix A). The active tendon displacement contributes to the 
quasi-static tension T‘ and also for the inertia force a*ü‘ that affects only the 
symmetric in-plane modes of the cable.
Following the same procedure with Equ.(5.15), we obtain the équation governing 
the vector x of the generalized coordinates of the structure.

ne

Mx + Kx = Bf
Q^iTi + T^ + Tl + T^^^l 

+Gf ÿ‘ + Gf ir* - Gf ü +

(5.18)

The left hand side of the structure équation is obtained from a standard finite 
element code; the sum in the right hand side represents the forces applied to 
the structure by the cahles; it consists of the axial loads of the cable tension 
for which the linear component has disappeared, the reaction forces due 
to the transverse vibration of the cable and the external forces applied to the 
structure / through the influence matrix B. The transformation matrix

(5.19)
1+12

projects the cable loads from the local to the global coordinate System. The 
équation governing the structure is further transformed into modal coordinates 
to reduce the number of degrees of freedom. For this purpose, let us introduce 
the vector of the modal coordinates q and the matrix of the mode shapes $ of 
the structure, prestressed by its dead load and the static tension of the cables 
To :

X = (5.20)
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Substituting Equ.(5.20) into Equ.(5.18), multiplying by adding some modaJ 
damping in the structure and removing the static tension Tq from Equ.(5.18), 
one finds that the dynamics of the structure around its static equilibrium is 
governed by

Ms (g + + figÇ) = ^ (5.21)
. +rf + rf P - rf Z + a*ü*.

where we hâve introduced the new constants defined as follows

/ig = : modal mass matrix of the structure

fîg = : modal frequency matrix of the prestressed structure. One
should note that the structure is prestressed by each cable with the static 
tension Tq.

P* = (5.22)

= = (5.23)
a* = (5.24)

Introducing the structure modal coordinates Equ.(5.20) in Equ.(5.17), the équa
tions governing the cable dynamics can be changed into

MUÿ' + 24ny + nV) + 5V(r,' + T‘g + Tj) + r;,9 =f« (5.25)

(p + 2^in^z' + n^z^) + 5‘z'(r,‘ + t; + rj) -f r\q

+A‘r‘-ru-a‘ü‘ =Fi (5.26)

The modal matrices /Xg, flg and mode shapes $ are extracted from the finite 
élément model of the prestressed structure where each cable are replaced by the 
static forces applied at the node a and b. Figure 5.2 summarizes the modelling 
technique of cable structures. A dedicated C-f-l- program has been developed 
for the simulation of the cable structure dynamics defined by the differential 
équations (5.21),(5.25) and (5.26).
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Standard Finite 
élément code

Cable Structure Dynamics 
C++ Software

Figure 5.2: Cable structure modelling technique.



Chapter 6

Active damping of cable 
structures

6.1 Introduction

In chapter 4, active tendon control has been applied to suppress the transverse 
vibration of a cable with small sag. We hâve demonstrated that the Intégral 
Force Feedback enjoys guaranteed stability properties and is effective for the 
first in-plane cable mode; the control algorithm has been demonstrated success- 
fully on a laboratory test article. As we hâve seen in the previous chapter, when 
the cable is connected to a structure they interact in a nonlinear manner : the 
cable excites the structure through the time varying tension in the cable and 
through the reaction forces; conversely the structure excites the cable through 
linear inertia forces (seismic excitation) and quadratic coupling terms. The lat- 
ter may produce a parametric excitation when the frequency of the vibrating 
support is twice the frequency of the transverse vibration of the cable.
The active damping of cable stayed bridges with an active tendon has been in- 
vestigated by Fujino and coworkers [19, 68]; the varions strategies investigated 
for damping the main structure and the in-plane and out-of-plane vibration of 
the cable are represented in Fig.6.1. They demonstrated that the vertical global 
mode of the bridge can be damped with a linear feedback of the girder velocity on 
the active tendon displacement (Fig.6.1.a) and that the in-plane (vertical) local 
cable vibration can be controlled efficiently by sag induced forces (Fig.6.1.b, see 
section 4.3.1). As we hâve seen in the previous chapter, the sag induced forces 
do not affect the out of plane local vibration of the cable, but the stiflFness con
trol discussed in chapter 4 can be applied (Fig.6.1.c). However, experimental 
results [19] hâve shown that an instability can occur when the cable structure 
interaction is large, especially when the structure natural frequency is close to 
twice that of the cable, causing the time-varying tension to resonate with the

65
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(a) Active tendon control
of global vertical mode (V Fujino)

(b) Sag induced control of local 
in-plane cable mode (K Fujino)

(c) Nonlinear stif&iess control of 
local out-of-plane mode

{J. C. Chen & Y. Fujino)

Figure 6.1: Control strategies investigated by Fujino and coworkers.
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structure. Note that the above strategies use a non-collocated pair of sensor 
and actuator and are prone to spillover [5].
In the first part of the présent chapter, the proposed control strategy is applied 
theoretically and experimentally to a cable structure with one degree of freedom. 
Next, the decentralized active tendon control strategy is demonstrated numeri- 
cally on a truss with guy cables. An approximate linear theory leading to a root 
locus technique for the prédiction of the closed-loop pôles is also presented; it 
leads to simple results which can be directly useful in the preliminary design of 
active cable structures. Finally, a laboratory mock-up is used to demonstrate 
experimentally the decentralized control of a multimodal structure with several 
cables; the prédictions by the linear approach and the numerical simulations of 
the nonlinear model (chapter 5) are compared with the experimental results.

6.2 Structure with one degree of freedom

6.2.1 Experimental set-up
In order to test the control strategy for a cable-structure System, the mock-up 
(Fig.3.1) has been modified in such a way that one end of the cable is connected 
to a spring-mass System with a tunable natural frequency (Fig.6.2). The modi
fied experimental set-up is represented in Fig.6.3; a shaker and an accelerometer 
are attached to the spring-mass System to evaluate the performance of the con
trol System.

6.2.2 Governing équations

For the mass-spring System (Fig.6.2), the équation governing the structure dy- 
namics [Equ.(5.21)] becomes

M {q + 2^sU>sq + u>^q) = f - F^z - afü + hu{u-q) - xf'* (6.1)

where q represents the longitudinal displacement of the mass M, tUj = 
is the natural frequency and / is the force applied by the shaker to the System. 
The transfer fonction between the shaker force and the accelerometer signal 
(Fig.6.4) shows a good agreement between the numerical simulations and the 
experimental results.

6.2.3 Control law

The proposed control law is the Intégral Force Feedback (4.28). Returning to the 
équation governing the structure motion, Equ.(6.1), we note that the actuator 
displacement u appears in the tendon force T, = —h^u. Using the same energy 
analysis as for the cable alone (section 4.2), the energy dissipation due to the 
active tendon control reads
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CabltL^

-Mass for 
/ frequmcy 
/ adjustmcnt

□(—e»=
m- rg~r

Mass-Spring System 
Mass : M 

StifEhess : K

Figure 6.2: Model of the cable structure System.

Figure 6.3: Cable structure System experimental set-up.
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Figure 6.4: Open-loop transfer function between the force applied by the shaker 
and the accélération of the mass. Comparison between experiments and simu
lations.

'JL ’çijdt — 7Ïh^CLq

Shu
w. (6.2)

where a, represents the amplitude of the displacement of the mass M; the 
équivalent damping introduced by the control in the structure is

ca _
2K + hu

(6.3)

The maximum damping due to the active tendon control is achieved when 
ghu/u>s = 1; for this value of the gain, we hâve

CO _
4K + h^

(6.4)

Note that the control acts also through the inertia term —ajü, but the cor- 
responding energy dissipation is negligible compared to that of —huU. Fig
ure 6.5 shows the numerical transfer functions with and without control, when 
fcable " fz\ ” 8 Hz, A — 0.15 and fstructure — fs — 12.6 Hz.
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Figure 6.5: Numerical transfer function between the shaker and the accelerom- 
eter, with and without control (nonlinear simulation).

Figure 6.6: Experimental transfer function between the shaker and the ac- 
celerometer, with and without control.
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Figure 6.8: Damping ratio of the global mode.

6.2.4 Experimental results

Figure 6.6 compares the transfer functions with and without control, when 
fcabie = 8 Hz, = 0.15 and /structure = 12.6 Hz. The corresponding time- 
history of the transient response is shown in Fig.6.7. Figure 6.8 shows the 
évolution of the active damping with the ratio fcabie!/structure when the mass 
M of the structure is changed for fixed values of the cable sag and the con
trol gain g. The figure includes experimental results, simulations obtained from 
numerical intégration of Equ.(5.25), (5.26) and (6.1) and from the approximate 
formula Equ.(6.3). We notice that the structure remains nicely actively damped 
at the parametric résonance, when /structure = fcabie-
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6.3 Decentralized control with several cables

6.3.1 Truss with guy cables

As an example of application, consider the 12 bay truss with three guy cables of 
Fig.6.9; the truss alone was already considered in [56] where its active damping 
was achieved with two active struts located in the first bay starting from the 
bottom. Here, we investigate the possibility to control the System with three 
guy cables of 1 mm diameter attached to the truss as indicated on the figure and 
provided with an active tendon at their base, at a distance of 1 m from the truss; 
we assume no gravity, so that the cables behave like strings. Without control, 
the net effect of the cables is to stiffen the truss, raising its natural frequencies; 
the control System affects both the natural frequencies and the damping of the 
modes. Figure 6.10 shows the évolution of the résonant peaks of the frequency
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Frequency (Hz)

Figure 6.10: Evolution of the résonant peaks of the frequency response between 
A and B in Fig.6.9 when the control gain g is changed.

response between a point force applied along the truss (A in Fig.6.9) and an 
accelerometer placed at the top, when the gain g of the control law (4.28) is 
changed (the same gain is used for every active tendon). These results hâve 
been obtained by solving numerically the nonlinear model [Equ.(5.21), (5.25) 
and (5.26)], taking into account the physical data of the actuators, including 
their finite stroke. We observe that, when the gain increases, the two résonant 
peaks drop very quickly, then move horizontally towards the lower frequency 
and then start to rise again at high gains, to become identical to the résonant 
peaks of the truss without guy cables. This behaviour is the conséquence of the 
well known fact that when we increase the gain, the closed-loop pôles start from 
the open-loop pôles and move towards the open-loop zéros. Since the zéros are, 
by définition, the frequencies of the input (the voltage at the piezo) where the 
output (the cable tension) vanishes, the tension in the cables becomes equal to 
zéro and the guyed truss behaves like the free one.

6.3.2 Approximate linear theory

In a situation like the one described in the préviens section, the cables are 
extremely light and behave essentially like strings. If we assume that the inter
action between the structure and the active cables is restricted to the tension
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in the cables and if one neglects the cable dynamics, the governing équation is

Mx + Kx = -BT (6.5)

where K refers to the structure without guy cables, T is the vector of tension in 
the guy cables and B is the influence matrix. If we neglect the cable dynamics, 
the tension in the cables is given by,

T = Kc {B'^x - 6) (6.6)

where Kc is the stiffness matrix of the cables, Kc = diag{hu), B^x are the rela
tive displacements of the extremities of the cables and S the active displacements 
of the tendons. Combining Equ.(6.5) and (6.6), we get

Mx + {K + BKcB'^)x = -BKc6 (6.7)

which indicates that K + BKcB^ is the stiffness matrix of the structure with 
guy cables. We assume that ail the guy cables hâve the same control law with 
the same gain in Laplace form.

ô = -|-T (6.8)
S fl/^

Combining with Equ.(6.6), we hâve

<5 = -^B'^x (6.9)
s + g

Laplace transforming Equ.(6.7) and substituting Equ.(6.9), we obtain the clo- 
sed-loop équation

Ms^ + {K + BKcB'^) -^BKcB'^ 
s + g

a: = 0 (6.10)

From this équation, it is readily observed that as g oo, the dynamics of the 
closed-loop System converges towards that of the structure without cables, as 
we observed in the numerical experiment of the previous section. Let us project 
Equ.(6.10) on the normal modes a; = of the structure with cables, assumed 
normalized according to = I. If we dénoté = ^‘^{K + BKcB^)^,
Equ.(6.10) becomes

s + g
2 = 0 (6.11)

To dérivé a simple and powerful resuit about the way each mode evolves with 
g, let us assume that the mode shapes are little changed by the active cables, 
so that we can write

= {K + BKcB'^) $ = -f- = u^ + u^ (6.12)
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Figure 6.11: Comparison of the root locus with the numerical simulation.

where the two matrices and are also diagonal. This hypothesis is identical 
to that made to dérivé Jacobi’s eigenvalue perturbation formula [4]. In this case, 
u>^ = contains the square of the natural frequencies of the structure
without the active cables. Substituting Equ.(6.12) into Equ.(6.11), we obtain a 
set of decoupled équations; the characteristic équation for mode i is

s^+n?-=0 (6.13)

or

s (s^ + fl?) + 5 (s^ + w?) = 0 (6.14)

This équation shows that the pôles go from ±jfli for 5 = 0 to ±ju>i for ÿ 00 
(as we hâve already seen) and that, in between, they follow the root locus 
corresponding to the open-loop transfer fonction

where the pôles and the zéros correspond to the natural frequencies of the 
structure with and without the active cables, respectively.
Figure 6.11 compares the prédiction of the foregoing linear theory with the nu
merical experiment performed with the full model already reported in Fig.6.10; 
we see that the agreement is quite good.
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According to the foregoing discussion, if a cable structure bas a set of active ca
bles which are such that the mode shapes of the structure, with and without the 
active cables, are not significantly different, every closed-loop pôle correspond- 
ing to the decentralized intégral force feedback follows the root locus defined by 
Equ.(6.15), where flj is the natural frequency of the structure with the active 
cables and uJ{ that of the structure without the active cables (but including 
the passive ones if any). The maximum value of the modal damping can be 
evaluated with a perturbation method : if we substitute s = nj[—-H j(l Ct)] 
in Equ.(6.14) and neglect the second order terms in and Q, we find easily

Ci =
ik
üi

(6.16)

(6.17)

From Equ.(6.16), the maximum modal damping is achieved for g* = Ctf, we find

^max _
4Üf

(6.18)

If we assume that fli + Wj w 2fîj, this resuit can be further simplified into

■max _ fii — U>i 

2üi
(6.19)

Thus, the maximum modal damping is controlled by the relative spacing of the 
natural frequencies, with and without the active cables. This resuit provides a 
simple rationale for selecting the number, the size and the location of the active 
cables in the first step of the design process.

6.3.3 Experimental results

In order to validate the foregoing theoretical results of the decentralized Inté
gral Force Feedback, a laboratory mock-up représentative of a very simple scale 
model of a cable-stayed bridge has been constructed (Fig.6.12). The structure 
is designed in such a way that its behaviour is dominated by a bending mode 
and a torsion mode (représentative of bridge deck first modes). The natural 
frequency can be adjusted by variable masses. The structure is supplemented 
by two cables connected to piezoelectric active tendons where the decentralized 
active damping (IFF) is applied. A shaker and an accelerometer are placed on 
the structure to evaluate the performances of the control System. The struc
ture masses are chosen in such a way that without cables the frequencies of 
the bending and torsion modes are respectively wj, = 55 rad/sec and ut = 75 
rad/sec. When the active cables are connected to the structure, the stiffness 
effect increases the modal frequencies to üi, = 75 rad/sec and fit = 88 rad/sec.
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Decentralized Active Tendon Control

Figure 6.12: Decentralized control of structures with several cables.

The IFF control algorithm is implemented independently in each tendon (i.e. 
decentralized control) with the same gain g.
Figure 6.13 compares the root locus of the closed-loop pôles obtained from the 
prédiction of the linear theory, Equ.(6.15), with those obtained with a numerical 
simulation performed with the full nonlinear model Equ.(5.21), (5.25), (5.26), 
and also the experimental results. We note that, for large values of the gain 
g the experimental root locus converges towards a higher frequency than that 
of the structure alone (without active cables). This discrepancy is due to the 
dynamics of the lever System used to amplify the actuator stroke as explained 
in the next section.
Figure 6.14 shows the transfer fonction between the shaker force and the ac- 
celerometer, with and without the decentralized Intégral Force Feedback. The 
corresponding free response of the structure is shown in Fig.6.15; we observe a 
beating due to the nearness between the bending and the torsion modes. The 
maximum damping ratio of 8% and 5% for the bending and the torsion mode 
respectively are achieved for the same gain g. In order to validate Equ.(6.19) 
which States that the maximum modal damping is controlled by the relative 
spacing of the natural frequencies, with and without active cables, the frequency



78 Chapter 6. Active damping of cable structures

-60

-60

Im(s)
-40

20

0
-14 -12 -10 -8 -6 -4 Re(s)-2 0

100

Q,

80
(ù,

60

Im(s) 
40

20

0
-10 -8 -6 -4 -2 0

—--------- T----------. A 1
(b) __—-—

*---------\---------- *—*-------------

'■'■-...^=0.1 '\.Ç=0.05

Approximate linear theory [Equ.(6.15)] '
X Simulation (nonlinear)
A Experiment

__________ 1________________________ 1___________________ Illi

Figure 6.13: Comparison of the experimental root locus with the linear prédic
tion and the numerical simulation : (a) bending mode (b) torsion mode.
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Figure 6.14: Experimental transfer function between the shaker and the ac- 
celerometer, with and without control.

Figure 6.15: Experimental free response of the structure, with and without 
control.
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Figure 6.16: Dépendance between the damping ratio and (fit — ù;t)/^t for the 
torsion mode.

of the torsion mode fit has been varied by changing the cable anchor location 
on the structure, to increase the distance to the torsion axis. Figure 6.16 com
pares the experimental maximum damping ratio of the torsion mode with the 
values predicted by the approximate relation (6.19) and also with the numerical 
simulations of the full model; the agreement is quite good.

6.4 Influence of the lever System

Consider the linear model of the cable structure with one degree of freedom 
(Fig.6.2) including the model of the lever System as indicated in Fig.(6.17). The 
structure is described by its mass M and its stiffness K; the cable stiffness is 
/lu; l0 is the moment of inertia of the lever. K a dénotés the tendon stiffness and 
Kg represents the stiffness of the non idéal rotational joint.
The potential energy of this System is

+ ^{re - XŸ + - be)^ + (6.20)

and the kinetic energy reads

r = y (6.21)

where x dénotés the absolute displacement of the structure, and 6 the small 
angle of the lever, induced by the small actuator stroke (±22/im). Applying 
the Lagrange équations to the undamped System, we easily find the équations 
governing its dynamics; we get
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Figure 6.17: Model of the cable structure System including the lever mechanism.

Mx + (K + hu)x - rhuO = 0
Igè + {Kg + r^hu + h^Ka)6 - rhuX = bKaSd (6.22)

The input of the System is the actuator displacement ôd and the output is the 
force measured in the active tendon

F = K,{Sd - be) (6.23)

Figure 6.18 represents the frequency response functions between Sd and F for 
several values of the stiffness Kg, while the values of the other parameters are 
représentative of the real System. One observes that, as the stiffness Kg is in- 
creased from Kg = 0, the frequency of the zéro moves from the natural frequency 
of the structure alone lJs — {K/My^'^ towards the natural frequency of the ca
ble structure fl* = [{K + /i„)/M]^^^. This resuit has been verified using various 
lever mechanisms with different values of the stiffness Kg. Thus, returning to 
the prédiction of the maximum damping ratio Equ.(6.19), one concludes that 
the control authority decreases with the imperfections of the lever rotational 
joint.

6.5 Conclusion

The energy absorbing and guaranteed stability properties of the Intégral Force 
Feedback hâve been proved on a cable structure System for a wide variety of 
operating conditions. The experimental results and the numerical simulations 
from the full nonlinear model are in good agreement. Moreover, in the particular 
case where the structure frequency is twice the cable frequency, we hâve verified
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Figure 6.18: Transfer function between the force F measured in the tendon and 
the desired displacement Sa of the actuator, for several values of Kg.

that the cable structure is actively damped and that the parametric excitation 
of the cable does not occur. Simple and powerful results hâve been established, 
which allow one to predict the closed-loop pôles with a root locus technique.



Chapter 7

Flutter control of 
cable-stayed bridges

7.1 Introduction

Under the excitation of strong wind gusts, a flexible suspension bridge may vi- 
brate with large amplitudes, and instability may occur when the mean wind 
velocity reaches a critical level, referred to as the critical flutter speed. This 
aeroelastic mechanism termed flutter is attributed to a vortex type excitation 
which is coupled with the motion of the bridge and generates self-excited aerody- 
namic forces. If the wind velocity increases beyond the critical flutter speed the 
resulting aerodynamic force will amplify the motion and the instability of the 
torsion modes arises [7, 13, 21]. On several occasions some suspended bridges 
hâve suffered serions damage or even complété destruction under wind, as the 
Tacoma Narrows disaster of 1940 (Fig.7.1). The classical flutter theory of thin 
airfoils has been well verified experimentally using wind tunnel tests, but it 
cannot be applied directly to bridges. The extensive work of Scanlan provides 
experimentally valuable information on the aeroelastic behavior of many types 
of bridge decks [62]. In this chapter, the flutter analysis applied to the classical 
case of a thin airfoil is reviewed; the équations governing the motion of the air- 
foil are discussed and the flutter mechanism is investigated using a root locus 
technique. However, the theoretical aerodynamic formulation for airfoil flutter 
is not directly transférable to bridges, as we will see. The approach based on 
experimental wind tunnel tests proposed by Scanlan is sufflcient to predict the 
flutter instability, but is not enough for the design of a control System for flutter 
suppression.
The second part of this chapter présents the application of the decentralized 
active tendon strategy to the control of the torsional flutter of cable-stayed 
bridges. For the experimental démonstration on a laboratory mock-up, the flut-

83
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Figure 7.1: Flutter of the Tacoma Narrows bridge in 1940.

ter is mechanically simulated by a control System which becomes unstable as 
the gain goes beyond some critical value.

7.2 Flutter analysis of a thin fiat plate

7.2.1 Aerodynamic forces and moments

Let us consider a strip of unit width of a two dimensional flat plate airfoil 
(Fig.7.2) having two degrees of freedom : a bending h (positive downward mea- 
sured at the elastic axis) and a pitching a (positive nose-up) about the elastic 
axis. Let the plate be situated in a flow of incompressible fluid at speed U, and 
consider its unsteady motion. The angle of attack a is assumed infinitésimal. 
The vertical velocity called the downwash at the 3/4 chord point, due to the 
vertical and pitching motion, is expressed as a function of the reduced time 
T = Ut/b which represents the distance travelled by the wind in semichords b; 
we hâve

w{t) = U a(r) + 7/i'(r) + 
0

(i - «») c'(t) (7.1)

The prime dénotés the dérivatives with respect to the reduced time r. The first 
term is the downwash corresponding to the pitching angle a. The component
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Figure 7.2: The two-dimensional flat-plate airfoil.

Uh' fb is due to translation velocity and the third one is the downwash due to 
the rotation velocity about the elastic axis. The unsteady aerodynamic forces 
acting on a thin airfoil in motion in a two-dimensional incompressible fluid was 
obtained by Wagner, Von Karman and others [21]. Wagner’s fonction </>(t) gives 
the growth of circulation about the airfoil due to a sudden increase of downwash 
which is uniform along the airfoil. This lift is given by

Li(r) = 2npbU
pT J

w{0)<p{r) + / (j>{T - a)-^da
Jo

for T > a (7.2)

It can be shown that this force acts at 1/4 chord on the airfoil and thus is also 
responsible of a torque. An approximate expression of the Wagner fonction 
(Fig.7.3) is

4>{t) = 1 - 0.1656-° °''®®’' - 0.3356-° ®’' for r > 0 (7.3)

When the airfoil has a general motion, the lift and moment of the non circulatory 
origin must be added; they consist of the following contributions : •

• A lift force with center of pressure at mid chord, equal to the apparent 
mass ma — pvrb® times the vertical accélération at the mid-chord point

L2 = p-kU^ [h" - ühba"] (7.4)

• A lift force with center of pressure at 3/4 chord, of the nature of a cen- 
trifugal force, equal to the apparent mass ma times U'^a'/b
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Figure 7.3: Wagner’s function for an incompressible fluid.

Lz = fmbU^a' (7.5)

• A nose down torque equal to the apparent moment of inertia rtiab'^/S times 
the angular accélération,

(7.6)

Thus, the résultant lift per unit span is

Lh = L\ + Lz + Lz

and the résultant moment per unit span about the elastic axis reads

Ma — ( 2 ^hbLz {I “*) bLz + Ma

(7.7)

(7.8)

7,2.2 Equations of motion

Let the bending and pitching displacements be resisted by a pair of springs 
at the elastic axis with stiflFnesses Kh and Ka as indicated in Fig.7.4. The 
équations governing the vertical and rotational motion of the flat-plate airfoil 
are as follows,

m(h + + Sa - -Lh{t) + p{t)

la (d + 2^a<^aà + w^a) + Sh — Ma{t) + q{t) (7.9)

where m dénotés the total mass of the plate per unit span, la is the mass moment 
of inertia and S = mbxa is the static moment, both talcen about the elastic



7.2. Flutter analysis of a thin Sat plate 87

Figure 7.4: Unsteady motion of a flat-plate airfoil.

axis, ujh = cJq = {Ka/IaY^^ are the natural frequencies in bending
and torsion, respectively, and and dénoté the structural damping ratios. 
Lh{t) and Ma{t) are the résultant lift and moment and p{t) and q{t) dénoté the 
external applied force and moment. The distance bxa appearing in the static 
moment is that between the elastic axis and the center of mass, positive when 
the center of mass is behind the elastic axis. We note that the bending and 
torsion are coupled by the inertia terms Sa, Sh and the aerodynamic forces Lh 
and Ma. Introducing the reduced time t in Equ.(7.9) we hâve

m {h” + 2^hwlh' + u*,yh) + Sa" = [-T/,(r) + p(r)]

la [a" + 2^a^l0i' + U}*a0t) + Sh" = [M«(t) + 7(r)] (7.10)

where = bu)h/U and w* = buJa/U represent the reduced frequency of the 
bending and torsion respectively.

7.2.3 Stability of the oscillating airfoil

The method of Laplace transform can be applied to study the stability of the 
oscillating airfoil. Upon substituting Equ.(7.7) and (7.8) into Equ.(7.10) and 
Laplace transforming, assuming that h{0) = h{0) = a(0) = à(0) = 0, we obtain

f Gii(s) Gi2(s) \ ( H{s) P{s) \
\ G2i{s) G22(s) J \ A{s) ) - V Qis) J

(7.11)

where H{s), j4(s), P{s) and Q(s) are the Laplace transforms of h(t), a(t), p(t) 
and g(t), respectively, and
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Gu (s) = [m + ma + 27cpbU^{s)] s^ + 2m^h^hS + mu\

Gi2(s) = [•5 - ahhma + 2‘ïïpb‘^U (| - a*) $(s)] + [rriaU + 2-KpbU^^{s)] s

G2i(s) = [5 - ahbrua + 2'npb'^U (| + a*) $(s)]

[^7a + TUa {ühbŸ + may - 2npb^U (I - al) $(s)j 

G22(s) = + [2Ia^ai^a ~ 2-Kpb'^U'^ (| + Oft) $(s) + TTla (| - O/,) bU] S

+7qWq
(7.12)

It can be shown [21] that the Laplace transform $(s) of the Wagner function 
0(r) can be expressed in terms of the Theodorsen function C(k) by replacing the 
reduced frequency k = u)b/U hy —js and multiplying by the Laplace transform 
of the step function (1/s):

$(,) = r ,7^,3)
Jo SS

In classical aeroelasticity, the tabulated values of the real and imaginary parts 
{F and G) of the Theodorsen function G(fc) are used to détermine the critical 
flutter speed. A root locus technique is more appropriate because it allows to 
evaluate the damping of the bending and the torsion modes when the velocity 
of the flow varies. A polynomial form of $(s) can be derived from Equ.(7.3),

0.165 _ 0.335
s + 0.0455 s + 0.3

(7.14)

The stability of the System can be assessed by tracking the évolution of the 
pôles when the flow velocity U varies. They are the solution of the characteristic 
équation :

A(s) Gu Gi2 
G21 G22

= 0 (7.15)

The critical flutter speed is that for which one branch of the root locus enters 
the right half plane. To illustrate the approach, consider the flat-plate airfoil 
with the following characteristics [21],

b = 0.291 (m), m = 3.261 (kg/m), S = 0.09489 (kg), = -0.2

la — 0.069 (kgm), u>a = 75.39 (rad/s), tUh = cJat^-
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Figure 7.5; Root locus of the airfoil System when the flow velocity U varies.

Figure 7.6: Dumping ratio as a function of the flow speed U : 
(a) bending mode (b) torsion mode.



90 Chapter 7. Flutter control of cable-stayed bridges

Figure 7.5 shows the root locus of the bending and torsion pôles as a function 
of the flow speed U; Fig.7.6 represents, the corresponding damping ratio of 
each mode. We see that, when the velocity of the flow gradually increases 
the rate of damping of the torsion mode flrst increases; if U increases further, 
a point is reached at which the damping rapidly decreases. At the critical 
flutter speed, the locus of the torsion mode crosses the imaginary axis which 
corresponds to a zéro damping ratio. Beyond this critical value, the instability 
of the torsional mode occurs. The flutter theory applied to thin airfoils [21] 
shows that flutter instability will occur only if a coupling between the bending 
and the torsion mode exists. These analytical results are in good agreement with 
the experiments performed in wind tunnels [62]. Numerous studies [13, 61, 62] 
hâve, however, pointed out the dissimilarity between airfoil and bridge deck 
flutter mechanisms.

7.3 Unsteady aerodynamics of a bridge deck

It is a common practice to study the flutter susceptibility of a suspended bridge 
deck by creating a reduced-scale, geometrically faithful model of a typical section 
of the deck and suspending it from springs for wind tunnel testing [62]. For the 
harmonie oscillations of a bridge deck cross-section, Scanlan has postulated the 
following linear form of the resulting lift and moment :

Lh = -pU^B KHl{K)^ -f- KH;{K)^ + K^Hl{K)a

(7.16)

KA\{K)^ + KA;{K)^ -h K^Al{K)a

The nondimensional coefficients H* and A*, termed "flutter dérivatives”, are 
to be determined experimentally. These flutter coefficients are, as in classical 
flutter, expected to be fonctions of the reduced frequency K = Buj/U where u> 
is the circular frequency of the oscillations and B = 26 is the full deck width. 
To demonstrate the link of the présent formulation to the airfoil flutter theory, 
it has been shown [62] that the set of H^, A^, when written for the classical 
case of a thin airfoil, has the following analytical expressions.

and

kH^{k) = -nF{k)
kH^{k) = -^[l + F{k) + lGik)]
k^H^ik) = - f [F{k) - |G(fc)]

(7.17)
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Figure 7.7: Aerodynamic dérivatives for airfoil and varions bridge deck sections 
(after Scanlan).

kA{{k) = |F(A:)
kA*^{k)^-^[l-F{k)-lG{k)] (7.18)
PAl{k)^^[F{k)-lG{k)]

where F and G are respectively, the real and imaginary parts of the Theodorsen 
function C{k), with k = K/2. It may be observed that, for the airfoil, the 
damping dérivatives kH^ and kA^ remain négative for ail values of k, which 
means that for individual motion h or a, the wind contributes positively to the 
damping in the deck, and thus no instability can be observed without coupling. 
By contrast to the case of the thin airfoil, ail the values and AJ" for the bridge 
decks must be obtained from experiments. Figure 7.7 shows the values of the 
flutter dérivatives for an airfoil, the original Tacoma Narrows deck, and three 
truss-stifîened bridge decks. Overall, the most important différence between 
airfoil and bridge deck results is revealed by the coefficient AJ, which, while 
differing among bridges, difîers always more drastically with AJ for the airfoil.
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Figure 7.8: Active control surface System in streamlined bridge girder.

The single most outstanding effect of is its sign reversai for the large majority 
of bridges, revealing a single-degree of freedom torsional instability, an effect not 
possible for an unstalled airfoil. As is well known, airfoil flutter will develop if a 
coupling occurs between the bending (h) and torsion (a) motions (because Hî 
and A2 are wholly négative). Such coupling is also possible for certain bridges, 
especially those with streamlined decks, but it is not necessary to create flutter.

7.4 Flutter control

By contrast to thin airfoils, most suspended bridges flutter in torsion and it 
appears that the key issue for flutter prévention in bridge design is the increase 
of their torsional stiffness. This traditional method to increase the flutter speed 
usually yields an expensive design. Research and development activities still 
focus on box girder concepts which alleviate the aeroelastic problems. The use 
of high damping structural material is also recommended whenever possible. 
Ail passive techniques will eventually meet limitations when it cornes to very 
large bridges with main spans exceeding 1000 m. An alternative approach, more 
promising and economical may be the application of active control devices. The 
active control device shown in Fig.7.8 is based on the idea of constantly monitor-
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ing movements of the deck and use the control surface movements to generate a 
stabilizing aerodynamic force (lift) counteracting any tendency of a self-excited 
oscillation [28, 30].
Another way of increasing the critical flutter speed is the deployment of eccentric 
masses. If placed inside the bridge girder, eccentric masses moving in the trans
verse direction constitute a possible means of improving the stability of long 
span bridges. This concept requires a control System to monitor wind condition 
and to control the mass position. Another possible solution for cable-stayed 
bridges is the application of active tendon control, which has been theoretically 
investigated by Yang [73, 74]. He demonstrated that the flutter speed can be 
raised with a linear feedback of the girder velocity on the active tendon force; a 
decentralized control scheme is used; the sensors are placed at the anchorage of 
each active cable in order to sense the vibration of the bridge deck. However, 
this control scheme based on the use of non-collocated actuator/sensor pairs is 
prone to spillover instability.

7.5 A laboratory démonstration of flutter con-

Our proposed decentralized active tendon control strategy based on a force 
sensor collocated with the actuator can be applied to the control of torsion 
flutter. The laboratory test structure used for this purpose is shown in Fig.7.9. 
The torsion flutter is simulated by a control System based on an electrodynamic 
shaker and two accelerometers placed on the structure and combined together 
in order to obtain a signal proportional to the angular accélération of the torsion 
coordinate â; a compensator based on a State feedback plus observer has been 
designed to relocate the torsion mode in the right half (unstable) plane (location 
corresponding to g* = 1 in Fig.7.12).
The experimental frequency response function between the shaker input v and 
the angular accélération a is represented in Fig.7.10.b. Assuming a perfect 
actuator dynamics, the analytical model of the cable structure can be identifled 
to the linear second order System shown in Fig.7.10.a. The governing équations 
of this System are

trol

V = Ax + Bv

(7.19)

where fît and represent the natural frequency and the inhérent damping ratio 
of the torsion mode; x = {à a)^ dénotés the State vector; v and y are the input 
and the output of the System respectively.
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Figure 7.9: Test structure experiment for the flutter control.

A State feedback regulator is used to relocate the torsion pôles in the unstable 
région of the complex plane; the control law is

V = -g*Gx = -g*G (à af (7.20)

where the gain vector G is selected in such a way that the torsion mode is 
relocated in the right half (unstable) plane for p* = 1; the scalar gain g* is 
added to the gain vector G in order to simulate the wind speed in the flutter 
mechanism : For g* — 0, the closed-loop System is identical to the open-loop 
structure (no wind), while for g* — the closed-loop System is in simulated 
unstable (flutter) condition.
Since the above State feedback requires the knowledge of the State vector x — 
(q a)^, there must be an additional step of State reconstruction. For this 
purpose, and starting from the identified model (Fig.7.10), an observer has been 
designed in order to estimate the torsion States â and à (angle and velocity 
respectively). The State space équations of the observer are

— = {A - LC)x + {B - LD)v F Ly 
ai

(7.21)
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Figure 7.10: Cable structure torsion mode : (a) linear model (b) experimental 
transfer fonction between the shaker input v and the angular accélération à.

where the gain matrix L is chosen in such a way that the observer pôles (given by 
the eigenvalues of the matrix A — LC) are stable and faster than the regulator 
pôles [54]. Thus, the équations of the compensator are obtained by combin- 
ing the State feedback regulator Equ.(7.20) and the State observer Equ.(7.21); 
Fig.7.11 represents a block diagram of the compensator which simulâtes the 
flutter mechanism. When the gain g* is varied from 0 to 1, the torsion pôles 
move from the stable open-loop pôles to the unstable ones, and the simulated 
flutter condition is achieved when g* is such that the pôles cross the imaginary 
axis (critical flutter gain).
In order to demonstrate the efficiency of the decentralized control with respect 
to the flutter mechanism, the compensator has been tested on the test structure 
(Fig.7.9). Figure 7.12 shows the évolution of the torsion pôles in the complex 
plane as a function of g*, with and without active tendon control; we see that 
the critical flutter gain g* is increased considerably by the active tendon control. 
Figure 7.13 shows the dumping ratio of the torsion mode aa a function of g*, 
with and without active dumping.
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Figure 7.11: Block diagram of the compensator : State feedback plus observer.

without control 
-A— with control

100

g*=0

g*=0
^-----A------A—A—

90.

Int (s) 

g*=0.25

'♦»♦♦♦ ♦—♦
g*=l

80 -
g*=1.35

70
-5 -3 -1 0 1 Re(s) 2

Figure 7.12: Root locus of the torsion mode as a function of the flutter gain g*.
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Figure 7.13: Effective dumping of the torsion mode as a function of g*.



Chapter 8

Conclusion

8.1 Main achievements of this study

We hâve presented a control strategy for the active damping of cable-stayed 
structures. The control methodology is based on the use of an active tendon 
consisting of a force sensor collocated with an actuator which Controls the dis
placement of the cable anchor point. The proposed control law called Intégral 
Force Feedback enjoys guaranteed stability properties, even for nonlinear Sys
tems.
The efficiency and the robustness of the control algorithm hâve been demon- 
strated on several laboratory mock-ups, including a cable alone, a cable struc
ture and a simple scale model of a cable-stayed bridge. The control efficiency 
has been confirmed on the cable as well as on the structure, even at the para- 
metric résonance. The Intégral Force Feedback has been applied successfully to 
the decentralized control of a structure with several active cables.
We hâve established simple and powerful criteria useful for the design of active 
cable-stayed structures; they allow one to predict the closed-loop behaviour of 
the System and to choose the number and the localisation of the active tendons. 
The torsion flutter has been mechanically simulated on a laboratory test article 
with a specially designed control System using a shaker and an accelerometer. 
It has been demonstrated that the flutter speed is considerably increased when 
the proposed decentralized control strategy is applied.
We hâve also developed a modelling technique of cable-stayed structures which 
is very efficient and can be used for control System design purposes. The model 
combines a finite element model of the prestressed structure and the nonlinear 
analytical dynamics of the stay cables in modal coordinates.
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Figure 8.1; Conceptual design of the active tendon control of a cable-stayed 
bridge.

8.2 Future works

The proposed control strategy can be extended to the active damping of ten
sion trusses, guyed mast and towers and ail other cable-stayed structures. For 
instance, the active damping of laxge space structures has long been recognized 
as a major issue for various reasons. On the other hand, it is quite likely that 
minimum weight future large space structures will consist of large trusses con- 
nected by tension cables. In this context, the damping strategy may consist in 
providing the tension cables with an active tendon in order to control the cable 
structure System; the damping efRciency should be appréciable because of the 
large stiffening effect of the stay cables.
The practical application of active tendon control to cable-stayed bridges re
lies on placing an actuator at one end of the cable and controlling its motion; 
Fig.8.1 shows the conceptual design of an active tendon control device. One
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should note that the required maximum displacement of the actuator would not 
exceed 0.01% of the cable span and the dynamical control force in the tendon 
would not be greater than 0.5% of the static tension. Our scale mock-up used 
piezoelectric actuators, but other types of actuators must be considered for full 
scale applications : most likely hydraulic, or maybe giant magnetostrictive ac
tuators.
Starting from this study, a consortium was formed in the frame work of the EEC 
BRITE-EURAM III program and an industrial project entitled “ACE : Active 
Control in Civil Engineering” started in May 1997. In addition to the Active 
Structures Laboratory (ULB) the consortium includes Bouygues S.A. (FR, coor- 
dinator), Defense Research Agency (GB), Magnetostrictive Technology Systems 
Limited (GB), Mannesman Rexroth GmbH (DE), Institut fur Werkzeugmaschi- 
nen und Fluidtechnik TUD (DE), Johs Holt AS (NW), VSL S.A. (FR) and 
Ecole Centrale de Lyon (FR). The main objectives of the project are :

• to develop an active vibration control System for cable-supported struc
tures.

• to improve an appropriate software package for the dynamic analysis of 
cable-stayed structures especially suited for control design purposes.

• to develop the appropriate actuators.

• to validate the active control concept with larger scale mock-ups including, 
one scaled cable-stayed bridge (approximate length 30 m) and one scaled 
guyed tower (the main différence between these two cable structures cornes 
from the level of the static tension in the stay cables).

In parallel to this industrial project, the future research program of the Ac
tive Structures Laboratory will include the aeroelastic modelling of cable-stayed 
bridges for flutter prédiction and the development of a prototype gyrostabilizer 
for flutter control.



Appendix A

Governing équations of the 
cable motion

A.l Quasi-static motion

Integrating the second équation of (2.47) and introducing the boundary condi
tions Equ.(2.48), we obtain

dx^
= 0 V'^{x,t) =Va + (Vb - Va) J (A.l)

Expanding the first and third équations (2.47), we find,

£w
dx^ cr® dx^

The intégration of Equ.(A.2) with the boundary conditions (2.48) yields,

(A.2)

X
w‘‘{x,t)-Wa + {Wb-Wa)-r------(A.3)

l (7®

Substituting Equ.(2.50) into (2.49) and integrating the strain-displacement re
lation, we get

u’(x,t)
Wb - Wa

l
w^(x) + dx + C (AA)

The constant of intégration C is obtained using the boundary condition of the 
axial component Equ.(2.48) at one anchor. Besides, according to the définition 
of the équivalent modulus, Equ.(2.38), the quasi-static stress a‘‘ is related to 
the support axial displacements by

(A.5)
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where Eg represents the effective modulus defined by Equ.(2.38). Finally, the 
set of équations (A.1),(A.3) and (A.4) governs the quasi-static motion of a small 
sag cable with movable anchors Equ.(2.52).

A.2 Energy partition in the cable vibration

A.2.1 Kinetic energy

Substituting Equ.(2.58), (2.52) and (2.55) in the expression of the kinetic energy 
Equ.(2.60) we obtain after some algebra (e.g. using a symbolic calculation 
software),

T
(3'''20504 120«7»)^“'’

ûbûa + ^ + '^bVa + ^ (^6 “ Waf + WbWa

i2i + ^y E
, A2 E
^ + Î2 + ^

{Wb - Wa){Ûb - Ùa)

0“ 2

1 A fW . A fâ^, . . ,.
------------J2\l -Z;Wb -Ua)Wa ~ -^\l-E^{Wb ~ Wa)Ua6 1 + V a

+ X! ^ (l’a + (-1)*+^Û6) ÿk + ^ {Wa + (-1)*'''^IÛ6) h
k

6 \ E 

kx

-2 7l(l + (-ir-) 1 g„, _ , ^ ^
{kirf a‘kn {ùb - ùa)zk + ^ÿl + iifc

(A.6)

If there is no transverse motion [Equ.(2.72)] and if we neglect the second order 
terms {ù\ , û^) the expression of the kinetic energy is simplified into

^ -2 I 1 -2
2” +2*

-2^., "(1+ (-!)+■)(»-« )i (A.7) 
(fcvr)

Defining the vectors of out-of-plane and in-plane cable mode amplitudes

y = { yi y2 ■■■ ynŸ
Z = { Zi Z2 ZnŸ (A.8)
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the kinetic energy Equ.(A.7) becomes,

T = ]^ÿ + P Z-a (ù -û)z (A.9)

where the modal mass matrix pc and the vector Oc are given by Equ.(A.35) and 
(A.40).

A.2.2 Strain

The axial strain in the cable involves a static component Eq, a quasi-static 
contribution Sq and a dynamic one ej. The static strain in the cable is

The quasi-static contribution reads

(A.IO)

£q
Eq Ufi Ua
'W i

(ATI)

and the dynamic strain is composed of a linear component and a nonlinear 
one Substituting the third équation (2.52) and Equ.(2.55) in the expres
sion governing the linear component of the dynamical strain, Equ.(2.63), and 
integrating along the cable span we find

V 7 (l + (-l)^+^)
rrS h'ir ^

dw^ dw‘^ 
dx dx dx

(Pw‘
dx“^

tpk{x)dx

(A.12)

Similarly, the nonlinear contribution of the dynamic strain is obtained by sub
stituting Equ.(2.55) into the integrated form of Equ.(2.64),

dw'^ dw'^ (dv^
dx dx \ dx J \ dx= [2 -I- dx

-E (T« 7 (H- (-1)* + ^)
kn Zk (A.13)
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A.2.3 Tension

The components of the variable part of cable tension, expressed in terras of the 
cable strain Equ.(2.67) reads

T = Tg+ + rf ^ (A.14)

with

• the quasi-static tension Tg :

Tg = EAeg ua) (A. 15)

• the linear coraponent of the dynaraical tension Tj due to the cable sag :

= EAe^P = h{z (A. 16)

• the nonlinear coraponent of the dynaraical tension Td due to the cable 
stretching and the axial displaceraent of the cable supports :

Tf = EAef = \fh2V + \z'^h2z - (A.17)

where the vector hi and the raatrix /12 are given by Equ.(A.33) and (A.34).

A.2.4 Potential energy

The Potential energy due to elastic élongation Equ.{2.69) can be expressed in 
terras of tension as follows

v = ^(ro + T)= (A.18)

The analytical expression of the gravitational potential energy can be obtained 
by substituting the third équation (2.52) and Equ.(2.55) into Equ.(2.70); after 
intégration along the cable span, we obtain

V° = - Ua) - (A.19)

where V° dénotés the constant, purely static terra, which will disappear frora 
the Lagrange équations.
The total potential energy is finally

Vc V* + V° + Vext

+ Y2 ~ ““) + ^° + '^ext (A.20)
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A.2.5 Lagrange équations
Using the expression of the kinetic energy Equ.(A.9) and potential energy 
Equ.(A.20),we hâve

dTc

dTc . .s
— = PcZ - adUb - Ua)

^ = -L(T + ^
dy EA dy^ dy

dVc l dT I „ dTO)

dz EA^°'dz
dV,ext

dy
dVext

dz

= -F„

= -F.

and from Equ.(A.16), (A.17) and (A.14), we obtain,

dV.ext

dz

(A.21)

dy

dz

_ dT^^'> _
dy

m
dz

2/i2y

dz + dT.(2)

dz
_u and dT(2)

d _
(1)

dz 2h2Z —
T,dT^ 
To dz

(A.22)

Substituting the previous équations in the Lagrange équations (2.59), we get 
the équation governing the out-of-plane motion.

1
dt \dÿ J dy 

H /

and the in-plane motion,

(A.24)

F,

dV,
dt \ dz J

+^(r„ + T)

d
+ = -T. {fJ'cZ - OCc{Ùb - Ûa))dz dt

0-1)
dT(1) dT(1)

dz dz
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or

/icZ - ac(Ü6 - Üa)

(A.25)

Assuming that the quasi-static tension and the linear component are neg-
rp J’(l)

ligible compared to the static tension (1 — ^ w 1 and 1-----^ w 1), using
Equ.(A.22), the previous équations (A.23) ancî (A.25), are reduced to,

f^cÿ + ^{To + T)h2y = Fy (A.26)

PcZ + + T)h2Z + — Oiciüb — üa) = (A.27)

Introducing the contribution of the axial tension Equ.(2.67), the frequency ma
trix n = diag{uji) [see Equ.(A.36)] and the vectors 5, and A given by Equ.(A.39)
and (A.32), the previous équations can be written alternatively as

Pc {ÿ + + Sy{Tq + Td) = Fy (A.28)

Pc [z + Çî^z) -t- Sz{Tq + Td) + ATd - adüb - üa) = F^ (A.29)

Adding some modal damping we hâve

Mc {ÿ + 4- n^y) -I- Sy{Tq + Td) = Fy (A.30)

Pc (z + 2^z^Z n^z) -|- Sz{Tq -|- Td) ATd ~ Ctc{üb ~ üa) = F^ (A.31)

where the modal damping matrices ^j,, are given by Equ.(A.37) and (A.38).

A.3 Summary of the cable parameters

This section summarizes the analytical form of the varions coefficients which 
appear in the dynamic équations of the cable, with the following notations

l : cable span

A : cable cross section

P : spécifie mass

E : Young’s modulus

(T® : static stress (or the static tension Tq = Acr*)
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6 : cable inclination angle

'y = pg cos 6 : distributed cable weight along z

^ : Irvine parameter

With the foregoing notations, the constant vectors and matrices appearing in 
the cable dynamic équations read

A=( 0 iLLktlzirm V
\ nu* U* nn /

l EA{^Ÿ 0 ,
0 EA{tI)

V 0 0 ■

Pc —

where /„ is the identity matrix of order n.

0 \ 
0

EA(^Ÿ )

(A.32)

(A.33)

(A.34)

(A.35)

^/i2

0
0

V 0 0

Çy = diag (Çy. ) 

= diag ) 

0/ 2̂1

q - 2^ -
0 ... ^ 21

im"

\ 0

0 \ 
0

(nAL
21

(A.36)

(A.37)

(A.38)

(A.39)

Oc -/lu (n^) A-(^pAl§f^-^ 0 ••• (A.40)



Appendix B

Cable dynamic 
nonlinearities

B.l The multiple scales method

Consider the second order differential équation,

(Px (B.l)

where / is a nonlinear function of the States x, x and time t.
The main idea of the method of multiple scales is to consider the expansion 
representing the response to be a function of multiple independent variables T„, 
or scales, instead of a single variable t. The independent variables are defined 
as.

Tn=e'^t for n = l,2, (B.2)

It follows that the dérivatives with respect to t become.

dt

dp

dTo d 
dt dTo

dTl d r. r.

— Dq + 2cDqDi + + 2D0D2) + • • • (B.3)

with Di = for i = 1,2, • • •.
One assumes that the solution of (B.l) can be represented by the expansion

x(t,e) = xq{To,T\,T2,-■ ■) + tx\{To,T\,T2,-■ ■)
+e^X2(îo, T'i,T2, • • •) +------h O(e^) (B.4)
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where e 1. The linear difFerential équations governing each function 
Xi{To,Ti,T2) are obtained from the substitution of Equ.(B.4) in Equ.(B.l).
In the next section, the method of multiple scales is used to establish a second 
order approximation {N = 3) of the frequency response of the DufRng équation 
around the primary résonance. Subsequently, the frequency response and the 
stability of the parametrically excited Duffing équation will be considered.

B. 1.1 Primary résonance with quadratic and cubic non- 
linearities

Consider the Duffing équation (3.7) with a harmonie excitation Fun- If we let 
2„ = ecos{tJznt) in Equ.(3.7), the cubic nonlinearity generates a third order 
term in e. To analyze the frequency response we need to order the damping, 
the excitation and the cubic nonlinearity, so that they interact at the same level 
of approximation. Therefore, if we let 2„ = ex, we need to order the damping 
term 2^zn‘^znZn as 2e'^^zn<jJznZn and the excitation term F^n as so that
the governing équation (3.7) becomes

X + ujI X = e^^^ - 2e^^zniz}zni - (B.5)
Pen

where ^2„ = and E„„ = e^F^n- Let us introduce a detuning parameter t], 

which quantitatively describes the nearness of the frequency of the excitation D 
to the primary résonance frequency Wzn as,

n = iJzn + (B.6)

where H — cJzn is assumed to be of the same order as the excitation [i.e. 0{e^)] 
for consistency. Substituting Equ.(B.4) and (B.6) into Equ.(B.S) and equating 
the coefficients of e°, e and e^, we obtain

D^Xo + Lul^xo = 0
DqXi + CUjnXi = -2D0D1X0 - Pnxl

DqX2 ~hU)^^X2 — d" 2DoD2)xq — ‘2‘^zn^zuFIqXq — l'n^o

^DqD\X\ Qi/3jiXqX\

+ Qena„n^ cos(a;,„ro + 77T2) (B.7)
f^cn

where a„ = The general solution of Equ.(B.7) can be expressed in the
form,

xo = ^(ri,T2)e‘“"^“ +Â(Ti,T2)e-‘“'"^» (B.8)
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where A{Ti,T2) is an undetermined function at this point and À dénotés its 
complex conjugate. The governing équations for A are obtained by requiring X2 

and x\ to be periodic in Tq. Substituting the expression of xq into the second 
équation of Equ.(B.S), we obtain

Dlxi + = -2iu)znDlAe'‘^‘’''^° - /3„ (^2g2iu.,„To ^ ^

where cc dénotés the complex conjugate of the preceding terms. Any particular 
solution of Equ.(B.9) has a periodic solution in Tq if the secular terms (non 
periodic) containing the factor Toe*“'"^“ vanish. We find that this condition is 
reduced to

DiA = Q => A = A{T2) (B.IO)

Hence, the solution of Equ.(B.9) reads,

Xi = l-bAÀ + >l2g2iw„To ^ ^2g-2ic^.„To\ (g

Substituting the solution of xi in the third équation of Equ.(B.7), we obtain 
the differential équation governing the State X2 as follows,

Dlx2+Jin^2 = + ~

1 iu;.„To ^ ^ jygy (g j2)
2/Tcn J

where cc dénotés the complex conjugate of the preceding terms and NST 
stands for terms proportional to Therefore, any particular solution
of Equ.(B.12) contains secular terms unless

2iüj,n{A' + Ini^.nA) + ~ = 0 (B.13)
V 3 UJlJ 2pcn

where the prime dénotés the dérivative with respect to the variable T2. Equation 
(B.13) governing the unknown complex function A{T2) can be solved using a 
polar form

A = iae*'’ (B.14)

where a and b are real functions of T2. Hence, substituting Equ.(B.14) in 
Equ.(B.13) and separating the resuit into real and imaginary parts, we find
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where 7 = rjT2 - b represents the phase angle of the response.
The steady-state response (a' = 7' = 0) corresponds to the singular points 
(ao,7o) of the System governed by Equ.(B.15) according to,

After the élimination of 70 from Equ.(B.16), we obtain the second order approx
imation of the frequency response équation governing the amplitude of motion 
ûo as a fonction of p and the amplitude a„ of the excitation in the vicinity of 
the primary résonance uizn ■

r n /3 5 \ al 1
2

( 0(.cn^u^
( Q

\2pcnao(^lnJ

which leads to Equ.(3.9) recalling that fl — tj^n =

B. 1.2 Parametric résonance

Approximate frequency response

We seek to establish the frequency response of the parametrically excited DufRng 
équation (3.10). As previously seen, with the method of multiple scales, we 
need to order the damping and the parametric excitation term in such a way 
that they interact at the same level of approximation. Therefore, if we let 
Zn = ex, we need to order the damping term 2^zn‘^zn^n 2e^^zn^znZn and the 
parametric excitation term RnUZn as e^i?„ûz„ so that the governing équation 
(3.10) becomes

Since we seek a second order approximation of the frequency response fonc
tion in the vicinity of the parametric résonance 2uzn, we introduce a detuning 
parameter t] related to the excitation frequency by

■p- QcnO'u^^ .
Çzn^^znO-O — -----------Sin 7o

(B.16)

X + = -2e^^zn<^zni ~ ~ C^^nX^ - t^RnXU (B.18)

n = 2u>zn + (B.19)
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where Q — 2uJzn is assumed to be of the same order as the parametric excita
tion [i.e. 0(e^)] for consistency. Substituting Equ.(B.4) into Equ.(B.18), and 
equating the coefficients of e°, e and e^, we get

DqXo -b u^„Xo = 0

D^Xi + CJ^„Xi = -2D0D1X0 - Pnxl

DIx2 + = -(-Dl + 2£>oI?2)a;0 - “̂ ^znl^znDoXo - Unxl
2DqD\X\ 2I5jiXqX\

-Rna^xo cos(2üJznTo + v'^2) (B.20)

where a„ = e^âu- The solutions of the first and the second équation (B.20) 
hâve already been established in the previous section. Hence, substituting the 
équations governing the States xq, Equ.(B.8), and xi, Equ.(B.ll), in the third 
équation (B.20), we obtain

2iw^„(Z)2^ + IznfJ^znA) -b

(3 21)

where cc represents the complex conjugate of the preceding terms and NST 
dénotés the non secular terms periodic in 3Tq. The élimination of the secular 
terms from Equ.(B.21) yields

2iu,n{A' -b ÎznOJznA) + (SUn ~ ^A"^À + = 0 (B.22)
' ^zn' ^

Substituting the polar form Equ.(B.14) of the unknown function A(T2) in 
Equ.(B.22) and extracting the real and imaginary parts, we obtain

! 'P , Rn^ua — -^zni^zn<i+ ------- asm 7

OJzniV-l') = -b ^^^C0S7 (B.23)

where 7 = t?T2 - 2b is the phase angle of the response. Hence, the singular 
points of Equ.(B.23) are governed by

-p RxiQh ,
= -7-^sm7o

/ 8 5 \ üq tCjiQ-u
V4 6cJi„/iJzn ^UJzn

Rn^u (B.24)



B.l. The multiple scales method 113

Thus, the élimination of 70 from Equ.(B.24) leads to the frequency response 
équation of the parametric excited duffing équation around the parametric rés
onance 2u>zn according to

or Equ.(3.11), keeping in mind that fl - 2u>zn =

(B.25)

Stability

Analysing the stability of the steady State response équation is precisely the 
problem of determining the behaviour of the solution near one of the singular 
points (ao,7o)- The stability of the singular points dépends on the real part of 
the eigenvalues of the jacobian matrix of the nonlinear second order differential 
System defined by Equ.(B.23), which in this case reads

X = U>z
b \ ^nO'u

COS70 (B.26)

If the real part of at least one of the roots is positive definite, the corresponding 
steady-state solution is unstable. The solution is stable if

COS70 < 0

The second équation (B.24) shows that

cos 7o = -(r-
and the stability condition is changed into

(B.27)

(B.28)

V <
6 ' ^zn

(B.29)

We note from the steady State response Equ.(B.25) that, when there are two 
solutions, the stability condition Equ.(B.29) is not satisfied for the solution 
having the smaller amplitude (the lower branch in dashed curve as shown in 
Fig.3.9) and thus it is unstable; while the stability condition is satisfied for the 
solution having larger amplitudes (i.e. the upper branch).
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Cable structure constants

Substituting Equ.(5.5) and (5.6) in Equ.(A.6), one easily finds that the constants 
appearing in the expression of the kinetic energy are as follows

N = {21. 
\ TT TT ^ ŸTITT /

(l 0 ••• 0 \

_ 0 -1 0

• O

• • O

(-1)"+! y

(C.l)

(C.2)

Gi = iV7^f Li + J/z‘A7^f Ll

G\ = Li + J/x•iV7^jJ Li

Gi = a^

ml Y ^ VVI A2 A-* E\
Al+^ ^ 12 V3 20 ^^ 504 120 CT»/

(C.3)

(C.4)

(C.5)

(C.6)

{TVjLif + \^

% == \PAI

1 ,
1+T7

1)'

(i + n + ^) - Li)Ÿ

-2m\JVj{Li-Liy {C.l)
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CR^Lif-R^Li + (Rj^LifR^Li + {R^ L^fR^L^

Ks =

+ i((7^f(L•-Li))^7^f(L•-Li)

+(l + 4^) - K)

-\T^\fi[T^lLiŸT^J(Li - Li) 

+m•7^f (L‘-Li)

(C.8)

Using the expression of the potential energy Equ.(5.8), we easily find

■ ^(T* + r‘ + T*, + Tf‘)^ ■

5V
dx t̂

+ ^§Té(R-i^(Li-Li))^

. -^(Ri^(Li + Li)f .
9T*

= /i‘dx “
{R^{Li-Li)f

(C.9)

(C.IO)

Note that the last static term in the sum can be neglected.
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