915 research outputs found

    Inherited crustal deformation along the East Gondwana margin revealed by seismic anisotropy tomography

    Get PDF
    Acknowledgments We thank Mallory Young for providing phase velocity measurements in mainland Australia and Tasmania. Robert Musgrave is thanked for making available his tilt-filtered magnetic intensity map. In the short term, data may be made available by contacting the authors (S.P. or N.R.). A new database of passive seismic data recorded in Australia is planned as part of a national geophysics data facility for easy access download. Details on the status of this database may be obtained from the authors (S.P., N.R., or A.M.R.). There are no restrictions on access for noncommercial use. Commercial users should seek written permission from the authors (S.P. or N.R.). Ross Cayley publishes with the permission of the Director of the Geological Survey of Victoria.Peer reviewedPublisher PD

    DFT study of [Pt(Cl)2L] complex (L = rubeanic acid) and its derived compounds with DNA purine bases

    Get PDF
    In this study, we present a systematic computational investigation on the electronic properties of cisplatin (cis-[Pt(Cl)2(NH3)2] (CP) and complex [Pt(Cl)2L] (1) (L = rubeanic acid) employing all-electron density functional theory. In detail, we analyzed essential molecular properties such as geometrical parameters, ionization energies, electron affinity, highest occupied molecular orbital, and lowest unoccupied molecular orbital energies. Concerning CP, molecule 1 exhibited improved lipophilicity and a pronounced electrophilic property. Furthermore, to investigate and compare the DNA binding capability between CP and molecule 1, we extended the investigation to the guanine and adenine derived complexes, respectively. Complexes of molecule 1 with the adenine and guanine bases followed a similar trend of stability found for CP systems, with the highest affinity found for guanine complexes. Altogether, molecule 1 displayed promising physicochemical and druglikeness features to serve as a starting point for developing a drug-like enough that could be therapeutically useful

    Nanoparticles in Cancer Diagnosis and Treatment

    Get PDF
    The use of tailored medication delivery in cancer treatment has the potential to increase efficacy while decreasing unfavourable side effects. For researchers looking to improve clinical outcomes, chemotherapy for cancer continues to be the most challenging topic. Cancer is one of the worst illnesses despite the limits of current cancer therapies. New anticancer medications are therefore required to treat cancer. Nanotechnology has revolutionized medical research with new and improved materials for biomedical applications, with a particular focus on therapy and diagnostics. In cancer research, the application of metal nanoparticles as substitute chemotherapy drugs is growing. Metals exhibit inherent or surface-induced anticancer properties, making metallic nanoparticles extremely useful. The development of metal nanoparticles is proceeding rapidly and in many directions, offering alternative therapeutic strategies and improving outcomes for many cancer treatments. This review aimed to present the most commonly used nanoparticles for cancer applications

    Seismic signature of subduction termination from teleseismic P- and S-wave arrival-time tomography : the case of northern Borneo

    Get PDF
    Acknowledgments S.P. acknowledges support from the Natural Environmental Research Council (NERC) Grant NE/R013500/1 and from the European Union's Horizon 2020 Research and Innovation Program under Marie Skłodowska-Curie Grant Agreement 790203. We thank the TanDEM-X Science Communication Team (German Aerospace Center (DLR) e.V.) for providing TanDEM topographic data. We thank the NERC Geophysical Equipment Facility for loan 1038 and seismometers loaned by the University of Cambridge and Aberdeen. We would like to thank Zhong-Hai Li and an anonymous reviewer for their constructive feedback during the review process.Peer reviewedPostprin

    The southern Zagros collisional orogen: new insights from transdimensional‐trees inversion of seismic noise

    Get PDF
    Imaging and resolving the lateral continuity of 3‐D crustal structures enhances our ability to interpret seismicity, and to understand how orogens are created. We apply a Bayesian, hierarchical inversion approach based on a transdimensional trees‐structured wavelet parameterisation to recover phase‐velocity maps at 2‐40 second periods. We then invert phase‐velocity dispersion to constrain a 3‐D shear‐velocity model of the crust beneath south‐central Iran. Together with accurate earthquake centroid depths and focal mechanisms, the pattern of 3‐D velocity variations supports recent suggestions that most large earthquakes in the Zagros occur within the lower sedimentary cover, or close to the sediment‐basement interface. Furthermore, we find evidence for Arabian basement underthrusting beneath central Iran, although only in one location does it appear to generate earthquakes. Our new 3‐D tomographic model clarifies and throws new light on the crustal structure of the SE Zagros and its relation to seismicity and active faulting

    The Southern Zagros Collisional Orogen: New Insights From Transdimensional Trees Inversion of Seismic Noise

    Get PDF
    Imaging and resolving the lateral continuity of 3-D crustal structures enhances our ability to interpret seismicity, and to understand how orogens are created. We apply a Bayesian, hierarchical inversion approach based on a transdimensional trees-structured wavelet parameterisation to recover phase-velocity maps at 2-40 second periods. We then invert phase-velocity dispersion to constrain a 3-D shear-velocity model of the crust beneath south-central Iran. Together with accurate earthquake centroid depths and focal mechanisms, the pattern of 3-D velocity variations supports recent suggestions that most large earthquakes in the Zagros occur within the lower sedimentary cover, or close to the sediment-basement interface. Furthermore, we fi nd evidence for Arabian basement underthrusting beneath central Iran, although only in one location does it appear to generate earthquakes. Our new 3-D tomographic model clarifi es and throws new light on the crustal structure of the SE Zagros and its relation to seismicity and active faulting.NERC Horizon 2020 Petroleum Institute Research Centr
    corecore