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Abstract: The use of tailored medication delivery in cancer treatment has the potential to increase
efficacy while decreasing unfavourable side effects. For researchers looking to improve clinical
outcomes, chemotherapy for cancer continues to be the most challenging topic. Cancer is one
of the worst illnesses despite the limits of current cancer therapies. New anticancer medications
are therefore required to treat cancer. Nanotechnology has revolutionized medical research with
new and improved materials for biomedical applications, with a particular focus on therapy and
diagnostics. In cancer research, the application of metal nanoparticles as substitute chemotherapy
drugs is growing. Metals exhibit inherent or surface-induced anticancer properties, making metallic
nanoparticles extremely useful. The development of metal nanoparticles is proceeding rapidly
and in many directions, offering alternative therapeutic strategies and improving outcomes for
many cancer treatments. This review aimed to present the most commonly used nanoparticles for
cancer applications.

Keywords: nanoparticle; metal nanoparticle; cancer diagnosis; nanotechnology; biomedical

1. Introduction

Cancer, a multifaceted illness, is becoming a global health crisis and the leading
cause of death and disability [1,2]. Around 9.6 million individuals died from cancer
in 2018, affecting 18.1 million people worldwide. More than two-thirds of the world’s
malignancies can be expected to be diagnosed by the year 2040. About 30% of early deaths
in individuals aged 30–69 are brought on by cancer [3]. Utilization of biological agents such
as terpenoids, plant alkaloids, anti-metabolites, and DNA-damaging alkylating chemicals
are used to treat cancer. Unfortunately, contemporary chemotherapy has several drawbacks,
most of which are attributable to the lack of target specificity and defects resulting in
deficiencies and inconsistent clinical outcomes. Since normal cells also proliferate rapidly,
chemotherapeutics are toxic to normal cells in the bone marrow, macrophages, digestive
tract, and hair follicles [4,5]. This results in chronic toxicity, including myelosuppression,
thrombocytopenia, anaemia, mucositis, organ malfunction, and alopecia. Due to this,
physicians may choose to delay, halt, or modify the dosage of the prescribed treatment [6,7].
In addition to toxicity, chemotherapeutic resistance decreases the effectiveness of anticancer
agents [8].
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Surgical, chemotherapeutic, and radiotherapeutic cancer treatments are now accessible
and widely utilized, as seen in Figure 1. However, their target is not just cancer but
also healthy cells, which is the most significant problem of modern cancer treatment.
Nanoparticles are nontoxic, stable, and biocompatible compounds found in nature, allowing
them to be used as an effective drug delivery technique [9].
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Figure 1. Types of cancer treatment.

Metal nanoparticles (NPs) may overcome difficulties associated with traditional treat-
ment. Reportedly, metal NPs perform a positive and potent function in cancer therapy
by improving targeting, gene silencing, and medication delivery. Functionalized metal
nanoparticles with targeted ligands enhance control over tumor energy deposition in tu-
mors. In addition to their therapeutic use, metal NPs are employed to image cancer cells
as a diagnostic tool. Not only do therapeutic systems based on metal NPs give simulta-
neous diagnosis and treatment, but they also permit regulated and targeted drug release,
revolutionizing cancer treatment and control.

Recently, NPs and nanotechnology have drawn a lot of interest in cancer therapy.
They receive a lot of attention in the field of cancer therapeutics because they may provide
more effective and targeted drug delivery strategies to address the drawbacks of conven-
tional chemotherapy [10,11]. Drug delivery at the target site is hampered by physical
and metabolic obstacles [12]. Drug activity is hampered at the cancer level by cellular
and non-cellular processes, which increases the risk of recurrence and mortality. Recent
decades have seen a substantial increase in scientific interest in nanotechnology because
of its distinct functional and physical characteristics [13]. Because of the unique physical
and chemical characteristics of NPs, including their chemical composition, small size, vast
surface area, and structure, all these applications are feasible and economical [14]. Applica-
tions of NPs may be advantageous in treating a number of diseases, including cancer [15].
Attractive potential for NP application includes diagnostics (nanoimaging), drug delivery
systems (nanocarrier), and the medical use of NPs themselves [16–18].

Current State of Research on Metal Nanoparticles for Cancer Diagnosis and Treatment

The use of metal nanoparticles in the detection and treatment of cancer has been
the focus of extensive investigation. Following is a summary of recent advancements in
this area:

(1). Diagnosis: Scientists have continued to look at the use of metal nanoparticles as
contrast agents for MRI, CT, and optical imaging. The use of lanthanide-doped upconver-
sion nanoparticles, which may transform near-infrared light into visible light and enable
deep-tissue imaging, is one recent advance [19]. Researchers have also looked into using
metal nanoparticles to identify exosomes, tiny extracellular vesicles released by cancer cells,
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as a means of early cancer diagnosis. High-sensitivity exosome detection has been achieved
by combining gold nanoparticles with surface-enhanced Raman scattering (SERS) [20].

(2). Treatment: Metal nanoparticles are still being researched as possible tools for
photothermal treatment and localized drug delivery. Utilizing copper nanoparticles as
possible therapies has been one recent discovery since it has been demonstrated that
they cause cancer cells to die through oxidative stress [21]. Additionally, studies on the
utilization of gold nanoparticles as delivery systems for other therapeutics, such as siRNA
and chemotherapy medicines, have proceeded [22].

Nanotechnology’s increasingly popular applications in the treatment of cancer are
largely due to its distinctively appealing properties for drug delivery, diagnosis, and
imaging, the creation of synthetic vaccines, and the development of tiny medical devices,
as well as the therapeutic properties of some nanomaterials themselves. Nanotherapies
that incorporate some of these characteristics (such as enhanced circulation and reduced
toxicity) are already in use, and others are showing great promise in clinical research, with
definitive results anticipated in the near future. Several therapeutic nanoparticle (NP)
platforms, such as liposomes, albumin NPs, and polymeric micelles, have been approved
for the treatment of cancer, and many other nanotechnology-enabled therapeutic modalities,
such as chemotherapy, hyperthermia, radiation therapy, gene or RNA interference (RNAi)
therapy, and immunotherapy, are under clinical investigation. We have made significant
advancements in the field of cancer nanomedicine, but we have also progressively come to
understand the difficulties and possibilities that lay ahead. First and foremost, it is obvious
that rigorous patient selection is necessary to determine which patients are most likely to
benefit from a particular nanotherapy, given the complexity and variety of cancers [23]

Overall, the most recent studies in this area have concentrated on enhancing the
specificity and effectiveness of metal nanoparticles for cancer detection and therapy, as well
as discovering novel kinds of metal nanoparticles with special features for these purposes.

2. Role of Nanoparticles for Cancer, Biomedical Properties, and Therapeutics

Nanotechnology has a growing potential for application in medical diagnosis and
therapy. Nanotechnology advancements have developed novel and better nanomaterials
for biomedical applications [24]. NPs are utilized in various applications due to their
unique properties [25]. Multifunctional NPs can transport hydrophobic compounds, target
disease cells both actively and passively, extend the time a drug is in the bloodstream,
increase the entry and accumulation of pharmaceuticals at tumor sites, overcome drug
resistance, increase the safety and tolerability of medications, and advance the development
of other technologies [26,27]. NPs are used in medical applications because of their unique
properties, such as quantum properties, a surface-to-mass ratio that is much higher than
that of other particles, and the ability to absorb and transport other compounds, such as
proteins and medicines. NPs can have variable compositions, as their beginning ingredients
might be dextran, chitosan, biological lipids, phospholipids, lactic acid, or chemicals such
as silica, metals, carbon, and other polymers [28–32]. Classes of NPs, along with their
advantages and disadvantages, are shown in Figure 2.

NPs are the perfect theranostic tools for tumor tracking and therapy because of their
size (1–100 nm) and the high surface-to-volume ratio [33]. Effective medicine delivery
is made possible by directly coupling NPs to various biomolecules, which also permits
anatomical and functional imaging. Three distinct processes are involved in the delivery of
NPs: (a) systemic localization without RES sequestration; (b) extravasation from intratu-
moral capillaries; and (c) diffusion and penetration into cancerous cells. NPs are effective
anticancer weapons due to the high accumulation levels in tumor cells [34]. Manufacturing
NPs bigger than 50 nm prevents RES sequestration [35]. Since solid tumors have a unique
microenvironment, NP is desirable for imaging and drug delivery. The tumor microenvi-
ronment comprises blood vessels, inflammatory cells, signalling molecules, extracellular
matrix, and lymphocytes. Blood vessels, inflammatory cells, signalling molecules, extracel-
lular matrix, and lymphocytes make up the tumor microenvironment [36]. Solid tumors
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differ from healthy tissue in permeable microvascular environments with capillary pores
between 120 and 1200 nm in size, which makes it easier for NP to penetrate tumors [37].

Materials 2023, 16, x FOR PEER REVIEW 4 of 24 
 

 

 

Figure 2. Classification of nanoparticles based on their physicochemical properties. 

NPs are the perfect theranostic tools for tumor tracking and therapy because of their 

size (1–100 nm) and the high surface-to-volume ratio [33]. Effective medicine delivery is 

made possible by directly coupling NPs to various biomolecules, which also permits ana-

tomical and functional imaging. Three distinct processes are involved in the delivery of 

NPs: (a) systemic localization without RES sequestration; (b) extravasation from intra-

tumoral capillaries; and (c) diffusion and penetration into cancerous cells. NPs are effec-

tive anticancer weapons due to the high accumulation levels in tumor cells [34]. Manufac-

turing NPs bigger than 50 nm prevents RES sequestration [35]. Since solid tumors have a 

unique microenvironment, NP is desirable for imaging and drug delivery. The tumor mi-

croenvironment comprises blood vessels, inflammatory cells, signalling molecules, extra-

cellular matrix, and lymphocytes. Blood vessels, inflammatory cells, signalling molecules, 

extracellular matrix, and lymphocytes make up the tumor microenvironment [36]. Solid 

tumors differ from healthy tissue in permeable microvascular environments with capil-

lary pores between 120 and 1200 nm in size, which makes it easier for NP to penetrate 

tumors [37]. 

3. Metal Nanoparticles and Their Application in Cancer 

The use of nanotechnology as a novel technique for cancer diagnosis, monitoring, 

and treatment has recently attracted interest in the biomedical community. Nanomaterials 

vary in diameter size from 1 to 1000 nm and display several distinctive features that differ 

from those seen in tiny particles or bulk materials. Nanomaterials have the potential to be 

used in several biological applications because of their substantial specific surfaces, high 

surface activity, robust antioxidant properties, outstanding biocompatibility, and solubil-

ity for molecular modifications. Liposomes, carbon nanotubes, polymeric micelles, 

graphs, quantum dots, metallic NPs, and magnetic NPs are often employed in biomedical 

applications. Previously, it has been demonstrated that using them extensively can im-

prove treatment results [38]. 

3.1. Gold-Based Nanoparticles 

The biological application of metallic nanoparticles, particularly gold nanoparticles 

(Au NPs), has sparked attention among numerous nanomaterials primarily due to its ap-

parent benefits. Various Au NP forms, including spherical, rod-like, cage-like, and others, 

in diameters ranging from 1 nm to more than 100 nm, can be prepared rapidly. Au NPs’ 

form and size significantly impact optical and electrical characteristics [39]. Moreover, Au 

Figure 2. Classification of nanoparticles based on their physicochemical properties.

3. Metal Nanoparticles and Their Application in Cancer

The use of nanotechnology as a novel technique for cancer diagnosis, monitoring,
and treatment has recently attracted interest in the biomedical community. Nanomaterials
vary in diameter size from 1 to 1000 nm and display several distinctive features that differ
from those seen in tiny particles or bulk materials. Nanomaterials have the potential to
be used in several biological applications because of their substantial specific surfaces,
high surface activity, robust antioxidant properties, outstanding biocompatibility, and
solubility for molecular modifications. Liposomes, carbon nanotubes, polymeric micelles,
graphs, quantum dots, metallic NPs, and magnetic NPs are often employed in biomedical
applications. Previously, it has been demonstrated that using them extensively can improve
treatment results [38].

3.1. Gold-Based Nanoparticles

The biological application of metallic nanoparticles, particularly gold nanoparticles
(Au NPs), has sparked attention among numerous nanomaterials primarily due to its
apparent benefits. Various Au NP forms, including spherical, rod-like, cage-like, and
others, in diameters ranging from 1 nm to more than 100 nm, can be prepared rapidly. Au
NPs’ form and size significantly impact optical and electrical characteristics [39]. Moreover,
Au NPs have a negative charge, and many biomolecules, including genes and targeting
ligands, can readily functionalize them [40]. Au NPs are harmless and biocompatible [41].
Surface plasmon resonance (SPR) bands are present in Au NPs, which also have an ultra-
small size, a macroscopic quantum tunnelling effect, and a distinct surface effect [42]. Due
to these unique characteristics, Au NPs have emerged as the most promising material for
various biological applications, such as drug delivery, molecular imaging, and biosensing.
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Photoacoustic Imaging

Photoacoustic imaging (PAI) is a biomedical imaging technology that employs endoge-
nous and exogenous contrasts and provides insightful data on the cellular and molecular
properties of the tissue. Because of their inherent and geometrically induced optical compo-
nents, Au NPs as exogenous contrast agents hold significant potential for PA imaging. The
most popular Au NPs forms for PA imaging include shells, prisms, spheres, rods, cages,
stars, and blisters [43].

Gold nanorods are frequently employed as PAI contrast agents. Using PAI, it has
previously been reported that Au/Ag activatable nanoparticles react to reactive oxygen and
nitrogen species (RONS). The gold core can be preserved, while just some of the shell can be
removed using RONS. The PAI signal is reactivated as a result of the etching. Iodide-doping
of silver improves RONS sensitivity, allowing the detection of physiologically relevant
levels in a mouse model (Figure 3) [44].
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3.2. Silver-Based Nanoparticles

Using silver (Ag) NPs as a safe and efficient method for treating cancer is challenging.
Integrative studies involving physicists, chemists, engineers for creating NPs, and biologists
who can evaluate the effects of Ag NPs in the cell systems they come in contact with, in
aspects of cytotoxic effects and ability to damage malignant cells, are required [45]. Ag
NPs are important and offer multiple advantages due to their size and shape-dependent
features, such as optical, magnetic, chemical, and physical characteristics [46]. Ag NPs are
included in numerous items, such as biosensors, composite fibers, antimicrobials, cosmetics,
and electrical chemicals [47]. Additionally, Ag NPs can be utilized in cell electrodes,
filters, nanocomposites, drug delivery, and medical imaging [47]. Ag is favoured over
other NPs due to its superior light absorption, higher resolution, and stronger affinity for
functionalization [48].
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Like other noble metal NPs, Au NPs display exceptional SPR, making them ideal for
usage in various fields, such as biosensing, catalysis, protein/gene transport, and photo-
controlled delivery systems [49]. In addition to their antiproliferative effects on cancer cells,
silver NPs can activate pathways that inhibit cell division and may be employed in the
detection of many cancers like lung cancer, prostate cancer, hepatic cancer, cervical cancer,
etc. Research on the antitumor effectiveness of Ag is still actively being conducted, despite
technological advancements in its well-defined shapes and sizes and biocompatibility tests
of both simple and coated Ag NPs.

3.3. Palladium-Based Nanoparticles

The development of palladium (Pd) based NPs is among the innovative nanoma-
terials that have significantly contributed to advancing the applications of noble metal
nanomaterials in biomedicine. Pd-based nanomaterials have distinct advantages over other
nanostructures made of noble metals. These advantages include biocompatibility and
good photothermal stability. These characteristics make Pd-based nanomaterials stand
out as exceptional and promising in biomedicine. After several years of research, Pd-
based nanomaterials, such as Pd NSs, Pd@Au, Pd NPs, and Pt@Pt nanostructures, have
been the subject of substantial investigation in the field of multimodal imaging-guided
cancer treatment.

Pd-based nanomaterials have been noted to exhibit remarkable optical properties,
high levels of biocompatibility, and high levels of stability in physiological conditions, all
of which make them extremely promising for use in biomedical applications. Research on
Pd-based nanomaterials started significantly later than that of other noble nanoparticles
that have been extensively studied, such as gold (Au) and silver (Ag) nanomaterials.
However, due to distinct qualities, including high photothermal conversion efficiency
and photothermal stability, they have attracted a lot of attention in the nanomedicine
sector. Pd-based nanomaterials display great near-infrared (NIR) absorption, a fast rate
of photothermal conversion, outstanding biocompatibility, and exceptional photothermal
stability. Pd nanosheets, porous/hollow Pd NPs, and Pd@M (M = Ag, Au, Pt, SiO2, ZIF-8)
are examples of these nanomaterials. Pd-based nanoparticles have emerged as promising
candidates for use as therapeutic agents and contrast agents in cancer imaging [50–52].

Pd nanosheets are typical examples of 2D nanomaterials with powerful NIR absorp-
tion, high photothermal conversion efficiency, outstanding photothermal stability, and
a high level of biocompatibility. The diameters of Pd nanosheets (Pd NSs) can be easily
altered to be anywhere between 5 and 120 nm while maintaining a consistent hexago-
nal shape [53,54]. The optical absorption peaks of Pd NSs shift depending on their size,
but they are always found in the NIR range, thus offering exciting prospects for use in
photothermal therapy (PTT). Table 1 summarises cancer therapies that utilize Pd-based
nanoparticles, both as stand-alone PTT treatments and in combination with other therapeu-
tic techniques [50].

Table 1. Summary of Pd-based nanoparticles for cancer treatment.

Type of Therapy Material Reference

Photothermal therapy (PTT)

Pd NSs [55,56]
Pd collora [57]
Pd@Ag nanoplates [58]
Pd@Au nanoplates [59]
Pd NS-CO Pd-TAT [60]
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Table 1. Cont.

Type of Therapy Material Reference

PTT and photodynamic therapy (PDT)

Pd@Pt-PEG-Ce6 [61]
Pd@Ag@mSiO2-Ce6 [62]
Pd-PEI-Ce6 [63]
H-Pd NSs [64]
PLCs-HSA-ICG [65]

PTT and chemotherapy

Dox-loaded 8dc-Pd NPs [66]
SPNS-DOX [67]
Pd@Au-PEG-Pt [68]
HMSS-NH2/DOX@Pd [69]

PTT and radiation therapy [131I]PHPdNPs-DOX [70]
131I-Pd-PEG [71,72]

PTT and immunotherapy Pd-CpG [73]

PTT and hydrogen therapy PdH0.2 nanocubes [74]
PdH-MOF [75]

3.4. Iron Oxide-Based Nanoparticles

Because of their exceptional magnetic properties, surface-to-volume ratio perfect for
successful functionalization, and biocompatibility, iron oxide NPs are often used in bio-
logical applications. Because these nanoparticles are now utilized in the medical system
as contrast agents and heating mediators, most of the attention is focused on their de-
velopment for MRI or magnetic particle hyperthermia. As a result, it is essential to keep
improving and making new materials that are better and more reliable [76] for molecular
imaging and biosensing.

Super Paramagnetic Iron Oxide Nanoparticles for Cancer Treatment

Superparamagnetic iron oxide nanoparticles (SPIONs) have drawn more attention due
to their superior superparamagnetism, magnetic heating abilities, and improved magnetic
resonance imaging (MRI). In vivo imaging, magnetic thermotherapy, and simultaneous
delivery of anticancer treatments are only a few benefits of conjugating SPIONs with medi-
cations to create delivery nanosystems. Additional targeting moieties such as transferrin,
hyaluronic acid, antibodies, aptamers, folate, and targeting peptides are coated onto the sur-
face of SPIONs to improve the targeting efficacy of pharmaceuticals delivered by a delivery
nanosystem based on SPIONs [77]. SPIONs exceptional MRI enhancement capabilities can
be employed as tracers to depict the location and status of illness in the body, in addition
to being deposited in cancer cells through the EPR effect and under an external magnetic
field. Furthermore, SPIONs have a lower potential for toxicity than other inorganic NPs
like their carbon- and gold-based counterparts because they can biodegrade into ferric
ions in the human body, particularly in cells with acidic conditions (such as the lysosome
and endosome) [78]. Theranostic agents based on SPION are essential for the delivery
of therapeutic payloads such chemotherapeutic drugs and genes and for the diagnosis
of cancer.

3.5. Copper-Based Nanoparticles

For biomedical applications, copper-based NPs have gained more interest. When
exposed to a near-infrared laser, copper chalcogenide NPs display excellent near-infrared
absorption, exhibit effective light-to-heat transformation, and selectively thermally de-
stroy the tumor. Smaller copper NPs demonstrate the fluorescence signal and optical
imaging capabilities. Additionally, copper-based NPs provide a flexible means of drug
administration and image-guided treatment. Current developments in the biological use of
copper-based NPs with an emphasis on cancer imaging and therapy have been discussed
by Zhou et al. [79].
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Copper NPs have more uses than Au and Ag NPs due to their reduced price, greater
cytotoxic action against cancer cells at low doses, and prolonged stability period [80]. Novel
copper-containing NIR-absorbing nano-formulations, such as copper selenide (Cu2-xSe)
nanocrystals, nanocubes, monodispersed CuTe nanorods, nanoplates, and copper bismuth
sulfide (Cu3BiS3) nanostructures, have all been fabricated and further confirmed for PTT.
All the nanomolecules of copper discussed above have strong anticancer potential and
improved photothermal heating efficiency [81].

3.6. Selenium-Based Nanoparticles

The trace element selenium (Se) is essential. It is included as selenocysteine, the
most significant component of the active centre of selenoproteins’ enzymatic activity.
Numerous selenoproteins have oxidoreductase activity and hence control the redox balance
in the body. Se has a small therapeutic window and very fragile toxicity margins, but
Se nanoparticles (SeNPs) have remarkably lower toxicity. SeNPs have been investigated
for their potential therapeutic effects in a number of oxidative stress and inflammation-
induced diseases, including cancer, diabetes, nephropathy, and arthritis. SeNPs serve as
a desirable drug delivery system for a variety of medications. The impact of nanosizing
on Se’s pharmacological action has been covered in this article. Presently discussed is
the function of SeNPs in the pharmacological defence against diverse inflammatory and
oxidative stress-mediated situations. SeNPs’ potential impact on the pharmacokinetics and
pharmacodynamics of selenoproteins, however, remains mainly unknown.

Human clinical trials validate the protective and curative functions of selenium in
the initiation and progression of cancer. Diverse anticancer processes of selenium [82]
can be divided into three major categories: thiol modification, chromatin binding and
alteration, and reactive oxygen species (ROS) generation. Important factors affecting
selenium’s biological activity, toxicity, and ability to prevent cancer are its amount and
form [83]. Selenium’s anticancer activities have traditionally been linked to its organic
form, particularly dietary selenium, and its antioxidant and pro-oxidant capabilities.

Studies on several malignancies, such as breast, lung, prostate, and colon cancers,
demonstrate cancer-protective effects.

The most prevalent form of selenium in plants, seleniomethionine, was once believed
to be the most chemopreventive and therapeutic form of selenium, but more recently,
methylselenocysteine was discovered to have higher biological activity [84]. Since then,
synthetic organoselenium species have been created that outperform their natural counter-
parts in terms of anticancer activity [85].

Despite their origins as an antioxidant, selenium-based medications like ebselen
(Figure 4) have demonstrated potential anticancer action against breast, liver, and colon
cancer cells. In Phase I clinical studies for the treatment of non-small cell lung cancer,
ethaselen, a modified version of ebselen, has demonstrated better solubility [82,86]. Ac-
cording to studies, selenium can prevent cancer by preventing DNA damage brought on
by the production of adducts caused by dimethylbenz(a) anthracene, which is a factor in
the development of breast, colon, and liver cancers [87].
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4. Nanoparticles for Medical Imaging

Medical imaging is commonly used to investigate biological processes, spot anomalies,
and track the development of illnesses [88]. The clarity of medical pictures is continually
being enhanced with the development of cutting-edge imaging technology. These meth-
ods include magnetic resonance imaging (MRI), computed tomography (CT), positron
emission tomography (PET), optical fluorescence imaging, photoacoustic imaging (PA),
single-photon emission computed tomography (SPECT), and ultrasound imaging (US) [89].

Imaging techniques serve a crucial function in the diagnosis and therapy of cancers.
Many NPs, such as iron oxide NPs [90], can enhance imaging due to their magnetic, optical,
acoustic, and structural properties [91]. Previous studies reported that injecting NPs into tar-
get tissues can improve image guidance and contrast for locating and removing tumors [92].
For instance, in cryosurgery, NPs can enhance the tumor’s and the ice ball’s imaging quality,
enabling more accurate coverage and improved therapeutic effectiveness [93]. In addition,
the majority of imaging NPs are composed of various metals. Table 2 provides examples of
NPs derived from multiple materials and their application in medical imaging [94].

Table 2. Different materials make typical NPs platforms for medical imaging.

Nanoparticles Size (nm) Targeting
Material Cell Line Imaging

Technology Ref.

PLGA-mPEG 151.1 ± 1.3 cRGD SKOV-3 cells Ultrasound [95]
MnO-TETT 6.7 ± 1.2 None C6 glioma cells Fluorescence/T1-MRI 1 [96]
Ultra small

MnO@mesoporous silica 30–50 Dox HeLa cells MRI-guided
chemotherapy [97]

PEG–coated and
Gdloaded flourescent

silica
125.5 ± 9.9 YPSMA-1

LNCaP and PC3
prostate cancer

cells

MRI/fluorescence
imaging [98]

Oxygen/indocyanine
green-loaded (OINPs) 300 Folate SKOV3 ovarian

cancer cells
Ultrasound/

photoacoustic [99]

1 Magnetic resonance imaging.
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A non-invasive, micron-level resolution and biological imaging method is optical
coherence tomography (OCT). Real-time diagnosis and surgical guiding are both facilitated
by OCT. However, it cannot pick up inelastic dispersed light because it lacks coherence in
the incident field [100]. Numerous studies have recently shown that the motion state of
NPs may alter the amplitude of OCT, which could resolve this issue. Interfering with the
movement of NPs in the magnetic field causes local changes in the dispersion of light. By
adding magnetic NPs, which may alter optical scattering and make it possible to identify
originally incoherent inelastic scattered light, one can regulate the movement of a magnetic
field. The name of this cutting-edge imaging technique is magnetomotive optical coherence
tomography (MMOCT) [96].

Magnetic resonance imaging (MRI) is one of the most effective non-invasive tumor
detection methods [101]. However, the absence of an MRI signal comparison between
normal and cancerous tissue hinders the clinical tumor diagnosis [102]. MRI is a scanning
imaging technique that assesses the degree of hydrogen molecule magnetization inside
water molecules. Due to the distinct variations in magnetization caused by each tissue’s
protons, each anatomical structure shows a unique picture. Applying more excellent
contrast agents can increase the visibility of images [103]. MRI scanning is a beneficial
medical diagnostic technique for an accurate anatomical picture, and for increased diag-
nostic sensitivity, contrast agents are frequently utilized in MRI [104]. Using MRI, one
can spot bodily tissues, organ states, blood flow, and physiochemical characteristics [105].
Chelate-based traditional contrast agents have limitations due to their biological stability
and degree of toxicity when accumulated in cells [106]. For example, iodine is present in
several contrast agents. The occurrence of incident hyperthyroidism has been associated
with exposure to iodinated contrast media [107]. Instead of using contrast chemicals, which
may be damaging to the body, alternatives have been developed to improve the scanning
efficiency [108]. There are also metal NPs that can be combined with a material to work
similarly to a contrast agent for MRI scanning [109].

Nanoparticles possess unique optical and magnetic properties that can be utilized to
improve imaging techniques. For example, quantum dots are semiconductor nanoparticles
that emit light of different wavelengths based on their size, making them ideal for fluores-
cent imaging. Iron oxide nanoparticles can be used as contrast agents in magnetic resonance
imaging (MRI) due to their magnetic properties, providing better visualization of tumors.
Gold nanoparticles, on the other hand, exhibit strong absorption and scattering of light,
enabling enhanced photoacoustic imaging. These nanoparticles enhance the sensitivity,
resolution, and specificity of imaging, allowing for early cancer detection, precise tumor
localization, and monitoring of treatment response.

5. Targeting of Cancer Cells by Metallic Nanoparticles

An effective method for cancer diagnosis and treatment is to target cancer cells using
metallic nanoparticles. Recently published research on the topic includes the following:

1. Copper nanoparticles: Copper nanoparticles have recently received interest as po-
tential anticancer therapies due to their ability to induce oxidative stress in cancer cells.
Reactive oxygen species (ROS), which lead to cell death, are produced by copper nanoparti-
cles, which have been demonstrated to selectively target cancer cells while sparing healthy
cells [110]. Additionally, it has been shown that copper nanoparticles increase the respon-
siveness of cancer cells to radiation therapy, promoting tumor remission [111].

2. Silver nanoparticles: Silver nanoparticles have also been investigated as a potential
cancer therapy. By interacting with proteins on the cell surface and causing cell death
by creating ROS, researchers have shown that silver nanoparticles may selectively target
cancer cells [112]. Silver nanoparticles have also been studied as imaging agents for cancer
diagnosis due to their powerful optical properties [113].
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3. Zinc oxide nanoparticles: These particles have been studied as potential anticancer
therapies since they may induce cancer cells to undergo apoptosis. The ability of zinc
oxide nanoparticles to precisely target cancer cells and induce cell death by triggering
caspases and suppressing anti-apoptotic proteins has been established [114]. Additionally,
zinc oxide nanoparticles have been shown to overcome the drug resistance of cancer cells,
improving the efficacy of chemotherapy treatments.

Recent research on metallic nanoparticles for cancer targeting has generally focused
on improving the specificity and efficacy of existing agents as well as looking into novel
kinds of nanoparticles with unique properties for cancer diagnosis and therapy.

A surplus of molecular information has resulted from the quick advancement in our
understanding of the molecular pathophysiology of illnesses and the development of novel
molecular biology tools. The speed of these advancements has led to the identification of
numerous molecular targets for pharmacological action at a rate that much exceeds our cur-
rent capacity to use this molecular knowledge [115,116]. Research and development efforts
are currently being made to find and create medications that disrupt the signal transduction
pathways used only by cancer cells. These medications will facilitate doctors to customize
each patient’s care based on the specific molecular targets that their tumor produces. Drugs
can be administered directly to the target organs where the tumor is located or to the cancer
cell’s surface. They can also be administered using a drug delivery system. The primary
components of such a targeted drug delivery are stated in the following:

• The availability of specific targets first bullet;
• Ligands for these targets;
• Techniques for delivering the drug to its target via various delivery systems conjugated

to the ligands.

Each form of cancer requires a distinct approach since they might be solid tumors
or hematologic malignancies. Drug administration is made more difficult by solid tu-
mors’ heterogeneous and dynamic biology, which constantly changes over time [117]. A
complete understanding of the biology of tumor cells, their microenvironment, and their
development patterns enables the creation of efficient, targeted drug delivery systems.

A drug can be targeted in two ways: by actively pursuing a drug carrier using
target-specific ligands, or by using the distinct pathophysiological features of tumor tissue
(Figure 5) [118].
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Development or engineering of a medication or gene delivery system with an out-
standing capacity to target tumor cells while preserving the normal healthy cells is vital for
effective cancer therapy. It increases therapeutic effectiveness, protecting healthy cells from
cytotoxicity. It can be done by strategically delivering NPs to the tumor microenvironment
(TME) and then indirectly targeting the cancer cells there. These nano-formulations should
be able to transit through a number of pharmacological and biological barriers. These
barriers are intricate systems made up of cellular membranes, mechanical and physico-
chemical barriers, enzymatic barriers, and layers of epithelium, endothelium, and other
tissue. To avoid non-specific targeting, these realities restrict the biocompatibility, surface
chemistry, and size of NPs. However, merely internalizing an NP drug molecule in the
cytosol does not guarantee that it has reached its subcellular target. To allow cellular or
nuclear targeting, specific engineering and optimization are required [119].

5.1. Targeting Cancer Stem Cells with Nanomaterials

A collection of proliferating cells with high power and excellent resistance to medi-
cations, known as cancer stem cells (CSCs), is the primary cause of cancer. In the 1990s,
CSCs were discovered and defined in the blood of leukaemia patients, and they appeared
to play a significant role in malignancy. The CSCs promote tumor development, resist
traditional treatments (such as chemotherapy and radiation), cause disease recurrence, and
produce metastases. Consequently, there is a lot of interest in using nanoscale materials
for CSC-directed cancer therapy. The NP surface has been engineered to precisely and
successfully target the CSCs [120]. Potential therapeutic targets for eradicating cancer
stem cells (CSCs) are surface indicators unique to CSCs. By joining targeting molecules to
drug-delivery NPs, active targeting can be accomplished. These molecules can only attach
to the markers present on CSCs. After binding, both internal and external events might
cause drug release. These techniques have been used to create a variety of NP-based drug
delivery platforms, as shown in Figure 6 [121].
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Chemotherapy and radiation are two standard cancer therapies that CSCs notably
resist. Therefore, to create effective medicines, knowing tumor biology is essential. New
therapeutic approaches for cancer treatment include identifying and specifically targeting
CSC-specific markers and signalling pathways [122–124]. Studies utilizing nanotechnology-
based therapies with several surface markers and biochemical tests for identification have
revealed the present effectiveness in the battle against CSCs [125].

5.2. Targeted Drug Delivery

Despite being the most popular form of cancer treatment today, chemotherapy still
suffers from the issues of inadequate target enrichment in regions of cancerous tumors
and over-accumulation in healthy tissue [126]. Inhibiting cells that reproduce rapidly,
such as hair follicles, bone marrow, gastrointestinal cells, and lymphocytes, may result
in undesirable side effects like hair loss, mucositis, and even death. The use of inorganic
nanoparticles in gene and drug therapy opens the door to targeted cancer detection and
therapy with enhanced efficiency and better treatment outcome [85]. Compared to the stan-
dard of care, targeted medication delivery, which involves actively differentiating between
healthy and cancer cells, is more effective and causes fewer side effects. Numerous studies
have demonstrated that NPs may actively or passively target chemotherapy medicines to
tumor cells [127]. Additionally, in several studies, NPs have been revealed to be crucial
for the targeted administration of immunological medications [128]. The lack of cancer
cell selectivity in chemotherapeutic drugs and the formation of many undesirable side
effects prompted the development of innovative drug delivery techniques. The growth of
“nano-engineered” mesenchymal stem cells (MSC) that can actively target the tumor site
and shield the drug-loaded NP from vascular filtration and macrophage clearance is made
possible by combining nanotechnology with cell therapy (Figure 7) [129,130].
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Targeted medication delivery to tumors has the potential to lower peripheral/systemic
toxicity, enhance the selectivity for killing cancer cells, and allow for dosage escalation. With
improvements in identifying tumor-specific targets and developing several drug delivery
methods for tumor targeting, hopes for developing an efficient, targeted drug delivery
modality for cancer therapy have grown. Although the ultimate goal is to remove cancer
from the patient altogether, more pragmatic aims to enhance the patient’s quality of life are
near to being realized. In the subsequent years, the focus will be on creating systems that
can effectively internalize into cancer cells while also being able to detect specific targets on
cancer cells. Some of these issues could be solved by combining targeted strategies. Other
promising ideas for medication targeting in cancer therapy include employing unique
molecular addresses on the vascular endothelium and targeting using magnetic fields
and ultrasound.

Nanoparticles can be engineered to selectively target cancer cells while sparing healthy
tissues. This is achieved by attaching specific targeting ligands, such as antibodies or pep-
tides, onto the nanoparticle surface. These ligands can recognize and bind to specific
receptors or biomarkers overexpressed on cancer cells, facilitating the preferential accu-
mulation of nanoparticles at the tumor site. By encapsulating or conjugating therapeutic
agents, such as chemotherapy drugs, small interfering RNA (siRNA), or gene therapy
vectors, nanoparticles can deliver these payloads directly to cancer cells. This targeted
approach increases drug concentration within the tumor, reducing off-target effects and
minimizing systemic toxicity.

5.3. Metal Nanoparticle Mediated Cryosurgery

Benefits of cryosurgery, the freezing of tumor tissue, include minimal cost, less
invasiveness, decreased intraoperative bleeding, and fewer postoperative issues. Still,
drawbacks include poor freezing efficiency and freezing damage to nearby tissues [93].
Antifreeze protein (AFP-1) has been used as a protective factor to aid with cold ablation, al-
though the results are still not perfect [131]. As nanotechnology evolved, nano-cryosurgery
arose as a concept. Nano-cryosurgery is predicated on the delivery of NPs with precise
physical or chemical characteristics into tumor tissues. By utilizing the properties of NPs, it
is able to manage range modification, ice ball formation direction, and freezing efficiency.
As a result, nano-cryosurgery can destroy tumor tissue while shielding nearby healthy
tissue from freezing simultaneously [132].

Intracellular ice creation during cryosurgery is essential for tumor cell destruction.
Researchers have shown that NPs can successfully promote the development of intracellular
ice in the interim [108]. NPs can cause heterogeneous nucleation by acting as outside
particles. According to a recent study, NP-enriched tissues freeze more quickly than
unenriched tissues and are more prone to heterogeneous nucleation. Moreover, NPs
can considerably speed up and enhance the likelihood of ice production in cells, killing
tumor cells more efficiently [133]. It has been demonstrated by the ease with which ice
forms in tissue when the same freezing conditions are applied. Additionally, the thermal
conductivity in tumor tissue would be greatly increased by NPs containing a metal oxide.

Since tumors are typically shaped irregularly, the ice crystals created by conventional
cryosurgery only partially cover the tumor tissue. Nano-cryosurgery is more effective than
traditional cryosurgery at solving this issue. Due to the fact that NPs may enter intracellular
fluid and possess favourable physical characteristics, such as thermal conductivity, it is
feasible to regulate the direction of ice ball development by scattering them [112]. Healthy
tissue is more susceptible to injury. In recent years, cryosurgery utilizing phase change
materials (PCMs) generated by nanoparticles has proven to have considerable promise
for protecting the surrounding healthy tissues [134]. The use of NPs in cold ablation falls
broadly into two categories: synergistic effect and protective effect, which differ in the NPs
design specifications and in vivo dispersion. Future NPs may help nano-cryosurgery by
being disseminated around the tumor while protective NPs are spread inside the cancer. In
addition to overcoming the challenges of cold ablation of rare tumors, nano-cryosurgery
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technology can also improve the effectiveness of cold ablation and lessen the harm to good
tissue. Table 3 lists a few recent instances of NPs being employed in cryosurgery [94].

Table 3. Common nanoparticle platforms utilized in cryosurgery.

NPs Size (nm) Thermal Conductivity
(W/m K)

Heat
Capacity
(J/m3 K)

Benefits Ref.

Fe3O4 8–14 7.1 3.2 × 106
More intracellular ice

formation, high
thermal conductivity

[135]

MgO 50 34.3 3.2 × 106 Nontoxic, biodegradable, and
few side-effects [133]

HCPN-CG 103.9 ± 1.5 None None

Cold-responsive NP for
control drug release and

NIR-induced
photothermal effect.

[136]

PCM 10–20 0.35 2.56 × 106 Health tissue protection [137]

Au 3 297.7 2.2 × 106 Good biological compatibility,
high thermal conductivity [138]

6. Types and Biological Properties of Nanoparticle Delivery Platforms

Using molecular platforms created for drug transport and selective targeting could be
more practical. Lipid nanocarriers (micelles, liposomes, and lipid nanoparticles), polymer
conjugates, polymeric nanoparticles, and antibody-drug conjugates are a few examples of
the proposed molecular platforms (ADCs). Selective targeting uses a platform’s inherent
properties like size, charge, or the presence of a particular polymeric component (such as
a polymer recognized by a specific receptor). It is also possible to directly functionalize a
molecular platform’s surface with a targeting agent or moiety.

While natural and synthetic polymers have found use in various industries, from
manufacturing materials to medicinal uses, recent decades have increased interest in
using them as parts of complex drug delivery systems. Due to these advancements, a
brand-new class of medications known as “polymer therapies” [139] emerged. Polymer-
drug conjugates, polymer-DNA complexes (or polyplexes), polymer-protein conjugates,
polymeric micelles, and polymer-aptamer conjugates, containing medicines covalently
tethered to the polymer carrier, are some examples of these novel chemical entities [140,141].

Traditional micelles and liposomes, which depend on the physical encapsulation of
medicines, can have problems, including the early release of the active ingredient, insta-
bility during storage and administration, and poor encapsulation. An early medication
release impairs the effectiveness of treatment and causes systemic toxicity. Since pharma-
ceuticals are conjugated to the polymeric backbone utilizing cleavable linkers that only
trigger drug release under specific circumstances, polymer treatments can address these
problems [142]. A range of medication delivery methods for the treatment of cancer is
shown in Figure 8 [143].
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7. Current Limitations of Metal Nanoparticles and the Challenges

The use of metal nanoparticles in detecting and treating cancer comes with several
limitations and challenges, despite the potential benefits. Following are some existing
limitations and challenges mentioned in this section:

Biodistribution and toxicity: One of the main problems with using metal nanoparticles is
their potential toxicity and biodistribution in the body. According to certain research, metal
nanoparticles can accumulate in organs and tissues and cause toxicity and adverse effects.
It is essential to accurately evaluate the toxicity and biodistribution of metal nanoparticles
before using them in therapeutic contexts [144]. Due to their extremely small physical
dimensions, nanoparticles are more hazardous than larger particles. Although fullerene
and carbon nanotubes are highly hazardous when inhaled into the lungs, carbon black is
not toxic. Similar to this, titanium oxide nanoparticles have been demonstrated to increase
toxicity and cause oxidative stress in bacterial cells. Many non-toxic bulk substances turn
poisonous when scaled down to the nanoscale. It is crucial to accurately assess the toxicity
and biodistribution of metal nanoparticles before using them in therapeutic contexts.

Stability and aggregation: Metal NPs’ instability and susceptibility to aggregation may
limit their effectiveness and selectivity for fighting cancer. Aggregation or agglomeration
can take place in metal nanoparticles, which can result in modifications to the nanoparticles’
physicochemical characteristics and a decrease in their therapeutic efficacy. Several envi-
ronmental conditions, such as changes in pH or the presence of biomolecules, can cause
aggregation in biological systems. Metal nanoparticles must be stabilized and prevented
from aggregating in order to be used in clinical settings with confidence. Researchers
have recently devised unique techniques to maintain the stability of metal nanoparticles
and prevent aggregation, including using surface coatings and conjugation with specific
ligands [145].

Specificity and selectivity: In the process of using metal nanoparticles to target cancer,
one of the challenges is attaining a specificity and selectivity adequate for cancer cells
while sparing normal cells. Traditionally, cancer-treating chemotherapeutic agents are
distributed non-specifically, damaging both healthy tissue and cancerous ones, resulting
in low efficacy and high toxicity. Controlled drug delivery systems would be excellent
carriers for chemotherapeutic agents, directing the chemotherapeutic agents to the tumor
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site, thereby increasing drug concentration in cancer cells and preventing toxicity to normal
cells. Researchers are investigating new targeting ligands and techniques to boost the
specificity and selectivity of metal nanoparticles for cancer cells [146].

Regulatory approval: The procedure for obtaining regulatory permission for the use
of metal nanoparticles in therapeutic applications may be difficult and time-consuming.
Extensive preclinical and clinical research is required in order to evaluate their safety,
effectiveness, and impacts over the long term. In order to successfully incorporate metal
nanoparticles into cancer diagnosis and therapy, it is vital to close the gap that exists
between research conducted in the laboratory and its use in clinical settings. The clinical
translation of metal nanoparticles for cancer diagnosis and treatment requires regulatory
approval and clinical investigations. This strategy calls for substantial preclinical and
clinical testing, which may be time-consuming and expensive. Still, it is necessary to
guarantee that the treatment will be safe and effective.

To address these limitations and challenges, researchers, engineers, healthcare providers,
and regulatory bodies must collaborate across disciplines. To overcome these obstacles and
realize their full potential for cancer treatment and other biomedical applications, continued
research and development in the field of metal nanoparticles is required.

8. Conclusions and Future Perspective

Biomedical applications of metal NPs have been the subject of many studies. They
are becoming increasingly popular in the biomedical sector due to their high inertness
and nanoscale architectures, which are equivalent in size to many biological molecules.
Particle intrinsic features, such as electrical, physicochemical, and optical surface plasmon
resonance, can be altered by modifying particle characteristics, including size, ease of
synthesis, shape, environment, aspect ratio, and functionalization qualities. Numerous
applications in a range of biomedical fields have resulted from this. Targeted medication
delivery, sensing, imaging, photothermal and photodynamic therapy, and controlling two
or three applications are a few of these applications.

Cancer is one of the diseases with the highest mortality rate in the world, even though
there are already treatments available for cancer that have considerable drawbacks. There-
fore, new anticancer strategies are once again necessary. One of the most promising
treatments for cancer treatment is metal NPs. Iron, gold, silver, zinc, and titanium are exam-
ples of metals that may function as anticancer agents, naturally or by surface modification.
Metal NPs are essential therapeutic and diagnostic tools in the fight against cancer.

According to researchers working to improve clinical outcomes, the greatest obstacle is
chemotherapy for cancer. The therapeutic efficiency of cancer treatments may be enhanced
with tailored medication administration, while unfavourable side effects may be decreased.
Nanotechnology has caused a fundamental shift in medical science. One of the upcoming
generation’s promising anticancer drugs is metal NPs. The extraordinary physical and
chemical flexibility of metal nanoparticles has attracted a lot of research. Due to their
distinctive plasmonic properties, noble metal NPs also offer a reliable way to monitor nano-
complex drug carriers inside the body, making them a more effective treatment option
with a reduced risk of adverse effects than conventional treatments. By using these NPs,
practitioners may learn about and track therapeutic outcomes during therapy. Non-noble
metal NPs are inexpensive and have distinct qualities, including magnetic and thermal
capabilities. Metal nanoparticles have shown promise as a cancer treatment in several
studies, and different compositions are now undergoing preclinical and clinical testing.
With NP-based imaging, it may be possible to pinpoint the stage of a tumor, and approaches
for treating it may be developed that reduce or eliminate the expected toxicity levels. Before
conducting clinical research, however, it is necessary to analyze many production and
utilization traits. Some measures include controlling preparation methods, reproducibility,
stability, dose, the amount of accumulation at target and off-target areas, and, most crucially,
toxicological concerns.
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The future perspectives of nanoparticles in cancer diagnosis and treatment are highly
promising. Following are some potential areas where nanoparticles will have a signifi-
cant impact:

Early cancer detection: NPs can be engineered to specifically target biomarkers associ-
ated with cancer cells, allowing for highly sensitive and specific early detection. This could
enable the diagnosis of cancer at its earliest stage, when treatment is most effective.

Improved imaging techniques: NPs can enhance existing imaging modalities such as
MRI, CT, and optical imaging. By functionalizing nanoparticles with targeting ligands
and contrast agents, they can improve the resolution, sensitivity, and specificity of cancer
imaging, enabling accurate tumor localization and monitoring of treatment response.

Targeted drug delivery: NPs can serve as vehicles for targeted drug delivery, improv-
ing efficacy and reducing the side effects of chemotherapy. They can encapsulate anticancer
drugs and deliver them directly to tumor sites, minimizing damage to healthy tissues.
Additionally, stimuli-responsive nanoparticles can release drugs in response to specific
triggers, such as pH, temperature, or enzyme activity within the tumor microenvironment.

Combination therapy: NPs offer opportunities for combining multiple therapeutic
modalities into a single system. For example, nanoparticles can be loaded with chemother-
apy drugs, immunotherapeutic agents, or gene therapies, allowing for synergistic effects
and personalized treatment approaches. This approach holds promise for overcoming drug
resistance and improving overall treatment outcomes.

Theranostics: NPs can integrate both diagnostic and therapeutic functionalities into a
single system, known as theranostic nanoparticles. These multifunctional nanoparticles can
simultaneously diagnose cancer, deliver therapy, and monitor treatment response. They
have the potential to revolutionize personalized medicine and enable real-time monitoring
of treatment efficacy.

Immunotherapy enhancement: NPs can play a crucial role in enhancing the efficacy
of immunotherapies, such as immune checkpoint inhibitors or cancer vaccines. They can
be used to deliver immunomodulatory agents, antigens, or adjuvants directly to immune
cells or tumor sites, stimulating a robust immune response against cancer cells.

Microenvironment modulation: NPs can be designed to target the tumor microen-
vironment and modify its characteristics. They can normalize abnormal blood vessels,
enhance drug penetration into tumors, modulate immune responses, or inhibit metastasis,
thus improving the overall treatment outcomes.

Regulatory bodies play a crucial role in developing new clinical criteria for using
metal NPs in cancer therapy and drug delivery, as well as new tools for evaluating the
effectiveness and safety of such nanoparticles. Furthermore, scientists are striving to
identify the best phytochemical conjugated metal NPs dosages for cancer patients and the
most efficient way to give these doses. Once these issues are resolved, it is conceivable that
metal NPs will become an indispensable therapeutic weapon in the fight against cancer.

There is an increasing demand for the practical translation of these technologies due
to the continual advancement of research in nanoparticles and cancer. Researchers are
attempting to create nanoparticle-based therapeutics that are both safe and effective so that
they may be utilized in medical facilities to improve the results of patients who have cancer.
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