217 research outputs found

    Association of polymorphisms in HCN4 with mood disorders and obsessive compulsive disorder

    Get PDF
    Hyperpolarization activated cyclic nucleotide-gated (HCN) potassium channels are implicated in the control of neuronal excitability and are expressed widely in the brain. HCN4 is expressed in brain regions relevant to mood and anxiety disorders including specific thalamic nuclei, the basolateral amygdala, and the midbrain dopamine system. We therefore examined the association of HCN4 with a group of mood and anxiety disorders. We genotyped nine tag SNPs in the HCN4 gene using Sequenom iPLEX Gold technology in 285 Caucasian patients with DSM-IV mood disorders and/or obsessive compulsive disorder and 384 Caucasian controls. HCN4 polymorphisms were analyzed using single marker and haplotype-based association methods. Three SNPs showed nominal association in our population (rs12905211, rs3859014, rs498005). SNP rs12905211 maintained significance after Bonferroni correction, with allele T and haplotype CTC overrepresented in cases. These findings suggest HCN4 as a genetic susceptibility factor for mood and anxiety disorders; however, these results will require replication using a larger sample

    Polymorphism in the Tyrosine Hydroxylase (TH) Gene Is Associated with Activity-Impulsivity in German Shepherd Dogs

    Get PDF
    We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH) gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1) the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS) filled in by the dog owners and (2) the newly developed Activity-impulsivity Behavioural Scale (AIBS) containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS

    Motivational modulation of bradykinesia in Parkinson's disease off and on dopaminergic medication.

    Get PDF
    Motivational influence on bradykinesia in Parkinson's disease may be observed in situations of emotional and physical stress, a phenomenon known as paradoxical kinesis. However, little is known about motivational modulation of movement speed beyond these extreme circumstances. In particular, it is not known if motivational factors affect movement speed by improving movement preparation/initiation or execution (or both) and how this effect relates to the patients' medication state. In the present study, we tested if provision of motivational incentive through monetary reward would speed-up movement initiation and/or execution in Parkinson's disease patients and if this effect depended on dopaminergic medication. We studied the effect of monetary incentive on simple reaction time in 11 Parkinson's disease patients both "off" and "on" dopaminergic medication and in 11 healthy participants. The simple reaction time task was performed across unrewarded and rewarded blocks. The initiation time and movement time were quantified separately. Anticipation errors and long responses were also recorded. The prospect of reward improved initiation times in Parkinson's disease patients both "off" and "on" dopaminergic medication, to a similar extent as in healthy participants. However, for "off" medication, this improvement was associated with increased frequency of anticipation errors, which were eliminated by dopamine replacement. Dopamine replacement had an additional, albeit small effect, on reward-related improvement of movement execution. Motivational strategies are helpful in overcoming bradykinesia in Parkinson's disease. Motivational factors may have a greater effect on bradykinesia when patients are "on" medication, as dopamine appears to be required for overcoming speed-accuracy trade-off and for improvement of movement execution. Thus, medication status should be an important consideration in movement rehabilitation programmes for patients with Parkinson's disease

    Murine Cytomegalovirus Infection of Neural Stem Cells Alters Neurogenesis in the Developing Brain

    Get PDF
    Congenital cytomegalovirus (CMV) brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus injures the CNS using a neonatal mouse model that mirrors congenital brain infection. This investigation focused on, analysis of cell types infected with mouse cytomegalovirus (MCMV) and the pattern of injury to the developing brain.We used our MCMV infection model and a multi-color flow cytometry approach to quantify the effect of viral infection on the developing brain, identifying specific target cells and the consequent effect on neurogenesis. In this study, we show that neural stem cells (NSCs) and neuronal precursor cells are the principal target cells for MCMV in the developing brain. In addition, viral infection was demonstrated to cause a loss of NSCs expressing CD133 and nestin. We also showed that infection of neonates leads to subsequent abnormal brain development as indicated by loss of CD24(hi) cells that incorporated BrdU. This neonatal brain infection was also associated with altered expression of Oct4, a multipotency marker; as well as down regulation of the neurotrophins BDNF and NT3, which are essential to regulate the birth and differentiation of neurons during normal brain development. Finally, we report decreased expression of doublecortin, a marker to identify young neurons, following viral brain infection.MCMV brain infection of newborn mice causes significant loss of NSCs, decreased proliferation of neuronal precursor cells, and marked loss of young neurons

    Coronin-1A Links Cytoskeleton Dynamics to TCRαβ-Induced Cell Signaling

    Get PDF
    Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages

    Coordinated Activity of Ventral Tegmental Neurons Adapts to Appetitive and Aversive Learning

    Get PDF
    Our understanding of how value-related information is encoded in the ventral tegmental area (VTA) is based mainly on the responses of individual putative dopamine neurons. In contrast to cortical areas, the nature of coordinated interactions between groups of VTA neurons during motivated behavior is largely unknown. These interactions can strongly affect information processing, highlighting the importance of investigating network level activity. We recorded the activity of multiple single units and local field potentials (LFP) in the VTA during a task in which rats learned to associate novel stimuli with different outcomes. We found that coordinated activity of VTA units with either putative dopamine or GABA waveforms was influenced differently by rewarding versus aversive outcomes. Specifically, after learning, stimuli paired with a rewarding outcome increased the correlation in activity levels between unit pairs whereas stimuli paired with an aversive outcome decreased the correlation. Paired single unit responses also became more redundant after learning. These response patterns flexibly tracked the reversal of contingencies, suggesting that learning is associated with changing correlations and enhanced functional connectivity between VTA neurons. Analysis of LFP recorded simultaneously with unit activity showed an increase in the power of theta oscillations when stimuli predicted reward but not an aversive outcome. With learning, a higher proportion of putative GABA units were phase locked to the theta oscillations than putative dopamine units. These patterns also adapted when task contingencies were changed. Taken together, these data demonstrate that VTA neurons organize flexibly as functional networks to support appetitive and aversive learning

    rTMS of the Left Dorsolateral Prefrontal Cortex Modulates Dopamine Release in the Ipsilateral Anterior Cingulate Cortex and Orbitofrontal Cortex

    Get PDF
    Background: Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson’s disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of noninvasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA). Methodology/Principal Findings: Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [ 11 C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [ 11 C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [ 11 C]FLB 457 BP following right DLPFC rTMS. Conclusions/Significance: To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [ 11 C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help t
    corecore