6,178 research outputs found

    Multifrequency nature of the 0.75 mHz feature in the X-ray light curves of the nova V4743 Sgr

    Full text link
    We present timing analyses of eight X-ray light curves and one optical/UV light curve of the nova V4743 Sgr (2002) taken by CHANDRA and XMM on days after outburst: 50 (early hard emission phase), 180, 196, 302, 371, 526 (super soft source, SSS, phase), and 742 and 1286 (quiescent emission phase). We have studied the multifrequency nature and time evolution of the dominant peak at ~0.75 mHz using the standard Lomb-Scargle method and a 2-D sine fitting method. We found a double structure of the peak and its overtone for days 180 and 196. The two frequencies were closer together on day 196, suggesting that the difference between the two peaks is gradually decreasing. For the later observations, only a single frequency can be detected, which is likely due to the exposure times being shorter than the beat period between the two peaks, especially if they are moving closer together. The observations on days 742 and 1286 are long enough to detect two frequencies with the difference found for day 196, but we confidently find only a single frequency. We found significant changes in the oscillation frequency and amplitude. We have derived blackbody temperatures from the SSS spectra, and the evolution of changes in frequency and blackbody temperature suggests that the 0.75-mHz peak was modulated by pulsations. Later, after nuclear burning had ceased, the signal stabilised at a single frequency, although the X-ray frequency differs from the optical/UV frequency obtained consistently from the OM onboard XMM and from ground-based observations. We believe that the late frequency is the white dwarf rotation and that the ratio of spin/orbit period strongly supports that the system is an intermediate polar.Comment: 17 pages, 22 figures, 7 tables, accepted for publication in MNRA

    Milk, coronary heart disease and mortality

    Get PDF
    <b>STUDY OBJECTIVE</b> To study the association between reported milk consumption and cardiovascular and all cause mortality. <b>DESIGN</b> A prospective study of 5765 men aged 35-64 at the time of examination. <b>SETTING</b> Workplaces in the west of Scotland between 1970 and 1973. <b>PARTICIPANTS</b> Men who completed a health and lifestyle questionnaire, which asked about daily milk consumption, and who attended for a medical examination. <b>MAIN RESULTS</b> 150 (2.6%) men reported drinking more than one and a third pints a day, Some 2977 (51.6%) reported drinking between a third and one and a third pints a day and 2638 (45.8%) reported drinking less than a third of a pint a day. There were a total of 2350 deaths over the 25 year follow up period, of which 892 deaths were attributed to coronary heart disease. The relative risk, adjusted for socioeconomic position, health behaviours and health status for deaths from all causes for men who drank one third to one and a third pints a day versus those who drank less than a third of a pint was 0.90 (95% CI 0.83, 0.97). The adjusted relative risk for deaths attributed to coronary heart disease for men who drank one third to one and a third pints a day versus those who drank less than one third of a pint was 0.92 (95% CI 0.81, 1.06). <b>CONCLUSIONS</b> No evidence was found that men who consumed milk each day, at a time when most milk consumed was full fat milk, were at increased risk of death from all causes or death from coronary heart disease

    XMM-Newton observation of MV Lyr and the sandwiched model confirmation

    Full text link
    We present spectral and timing analyses of simultaneous X-ray and UV observations of the VY Scl system MV Lyr taken by XMM-Newton, containing the longest continuous X-ray+UV light curve and highest signal-to-noise X-ray (EPIC) spectrum to date. The RGS spectrum displays emission lines plus continuum, confirming model approaches to be based on thermal plasma models. We test the sandwiched model based on fast variability that predicts a geometrically thick corona that surrounds an inner geometrically thin disc. The EPIC spectra are consistent with either a cooling flow model or a 2-T collisional plasma plus Fe emission lines in which the hotter component may be partially absorbed which would then originate in a central corona or a partially obscured boundary layer, respectively. The cooling flow model yields a lower mass accretion rate than expected during the bright state, suggesting an evaporated plasma with a low density, thus consistent with a corona. Timing analysis confirms the presence of a dominant break frequency around log(f/Hz) = -3 in the X-ray Power Density Spectrum (PDS) as in the optical PDS. The complex soft/hard X-ray light curve behaviour is consistent with a region close to the white dwarf where the hot component is generated. The soft component can be connected to an extended region. We find another break frequency around log(f/Hz) = -3.4 that is also detected by Kepler. We compared flares at different wavelengths and found that the peaks are simultaneous but the rise to maximum is delayed in X-rays with respect to UV.Comment: 17 pages, 21 figures, 4 tables, Accepted for publication in MNRA

    X-ray and UV observations of nova V598 Puppis between 147 and 255 days after outburst

    Full text link
    Aims: The launch of Swift has allowed many more novae to be observed regularly over the X-ray band. Such X-ray observations of novae can reveal ejecta shocks and the nuclear burning white dwarf, allowing estimates to be made of the ejecta velocity. Methods: We analyse XMM-Newton and Swift X-ray and UV observations of the nova V598 Pup, which was initially discovered in the XMM-Newton slew survey. These data were obtained between 147 and 255 days after the nova outburst, and are compared with the earlier, brighter slew detection. Results: The X-ray spectrum consists of a super-soft source, with the soft emission becoming hotter and much fainter between days ~147 and ~172 after the outburst, and a more slowly declining optically thin component, formed by shocks with kT ~ 200-800 eV (corresponding to velocities of 400-800 km s^-1). The main super-soft phase had a duration of less than 130 days. The Reflection Grating Spectrometer data show evidence of emission lines consistent with optically thin emission of kT ~100 eV and place a limit on the density of the surrounding medium of log(n_e/cm^-3) < 10.4 at the 90 % level. The UV emission is variable over short timescales and fades by at least one magnitude (at lambda ~ 2246-2600 angstrom) between days 169 and 255.Comment: 6 pages, 5 figures, accepted for publication in A&

    From X-ray dips to eclipse: Witnessing disk reformation in the recurrent nova USco

    Get PDF
    The 10th recorded outburst of the recurrent eclipsing nova USco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after outburst. Two full passages of the companion in front of the nova ejecta were observed, witnessing the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve which disappeared by day 34.9, then yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highly elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal87.Comment: Submitted to ApJ. 16 pages, 16 figure

    Exploring disparities and similarities in European food consumption patterns

    Get PDF
    This paper investigates the heterogeneity of food consumption patterns in Europe. The analysis relies on a wide set of indicators, namely the structure of calorie, protein and fat consumption as well as the consumption of main foodstuffs. Clusters based on estimated income elasticity of calorie and protein demand are also reported. Income elasticities of animal products tend to exceed those corresponding to the total calorie demand. The same pattern holds true for the elasticity of demand for proteins. Main dimensions of consumption are identified based on factor analysis and used subsequently for the purpose of clustering countries. The hard core clusters are those that remain stable regardless of the algorithm used in classification or the indicators as a proxy of food consumption patterns. A limited number of hard core clusters of countries emerged. The paper concludes with a discussion of clusters with homogeneous patterns of consumption.food consumption patterns, Europe, factor analysis, cluster analysis, hard-core clusters

    Non-equilibrium inelastic electronic transport: Polarization effects and vertex corrections to the self-consistent Born approximation

    Full text link
    We study the effect of electron-vibron interactions on the inelastic transport properties of single-molecule nanojunctions. We use the non-equilibrium Green's functions technique and a model Hamiltonian to calculate the effects of second-order diagrams (double-exchange DX and dressed-phonon DPH diagrams) on the electron-vibration interaction and consider their effects across the full range of parameter space. The DX diagram, corresponding to a vertex correction, introduces an effective dynamical renormalization of the electron-vibron coupling in both the purely inelastic and the inelastic-resonant features of the IETS. The purely inelastic features correspond to an applied bias around the energy of a vibron, while the inelastic-resonant features correspond to peaks (resonance) in the conductance. The DPH diagram affects only the inelastic resonant features. We also discuss the circumstances in which the second-order diagrams may be approximated in the study of more complex model systems.Comment: To be published in PR
    corecore