151 research outputs found

    Wound-up phase turbulence in the Complex Ginzburg-Landau equation

    Get PDF
    We consider phase turbulent regimes with nonzero winding number in the one-dimensional Complex Ginzburg-Landau equation. We find that phase turbulent states with winding number larger than a critical one are only transients and decay to states within a range of allowed winding numbers. The analogy with the Eckhaus instability for non-turbulent waves is stressed. The transition from phase to defect turbulence is interpreted as an ergodicity breaking transition which occurs when the range of allowed winding numbers vanishes. We explain the states reached at long times in terms of three basic states, namely quasiperiodic states, frozen turbulence states, and riding turbulence states. Justification and some insight into them is obtained from an analysis of a phase equation for nonzero winding number: rigidly moving solutions of this equation, which correspond to quasiperiodic and frozen turbulence states, are understood in terms of periodic and chaotic solutions of an associated system of ordinary differential equations. A short report of some of our results has been published in [Montagne et al., Phys. Rev. Lett. 77, 267 (1996)].Comment: 22 pages, 15 figures included. Uses subfigure.sty (included) and epsf.tex (not included). Related research in http://www.imedea.uib.es/Nonlinea

    Lattice-gas simulations of Domain Growth, Saturation and Self-Assembly in Immiscible Fluids and Microemulsions

    Full text link
    We investigate the dynamical behavior of both binary fluid and ternary microemulsion systems in two dimensions using a recently introduced hydrodynamic lattice-gas model of microemulsions. We find that the presence of amphiphile in our simulations reduces the usual oil-water interfacial tension in accord with experiment and consequently affects the non-equilibrium growth of oil and water domains. As the density of surfactant is increased we observe a crossover from the usual two-dimensional binary fluid scaling laws to a growth that is {\it slow}, and we find that this slow growth can be characterized by a logarithmic time scale. With sufficient surfactant in the system we observe that the domains cease to grow beyond a certain point and we find that this final characteristic domain size is inversely proportional to the interfacial surfactant concentration in the system.Comment: 28 pages, latex, embedded .eps figures, one figure is in colour, all in one uuencoded gzip compressed tar file, submitted to Physical Review

    Polarisation Patterns and Vectorial Defects in Type II Optical Parametric Oscillators

    Get PDF
    Previous studies of lasers and nonlinear resonators have revealed that the polarisation degree of freedom allows for the formation of polarisation patterns and novel localized structures, such as vectorial defects. Type II optical parametric oscillators are characterised by the fact that the down-converted beams are emitted in orthogonal polarisations. In this paper we show the results of the study of pattern and defect formation and dynamics in a Type II degenerate optical parametric oscillator for which the pump field is not resonated in the cavity. We find that traveling waves are the predominant solutions and that the defects are vectorial dislocations which appear at the boundaries of the regions where traveling waves of different phase or wave-vector orientation are formed. A dislocation is defined by two topological charges, one associated with the phase and another with the wave-vector orientation. We also show how to stabilize a single defect in a realistic experimental situation. The effects of phase mismatch of nonlinear interaction are finally considered.Comment: 38 pages, including 15 figures, LATeX. Related material, including movies, can be obtained from http://www.imedea.uib.es/Nonlinear/research_topics/OPO

    Phase-Locked Spatial Domains and Bloch Domain Walls in Type-II Optical Parametric Oscillators

    Get PDF
    We study the role of transverse spatial degrees of freedom in the dynamics of signal-idler phase locked states in type-II Optical Parametric Oscillators. Phase locking stems from signal-idler polarization coupling which arises if the cavity birefringence and/or dichroism is not matched to the nonlinear crystal birefringence. Spontaneous Bloch domain wall formation is theoretically predicted and numerically studied. Bloch walls connect, by means of a polarization transformation, homogeneous regions of self-phase locked solutions. The parameter range for their existence is analytically found. The polarization properties and the dynamics of walls in one- and two transverse spatial dimensions is explained. Transition from Bloch to Ising walls is characterized, the control parameter being the linear coupling strength. Wall dynamics governs spatiotemporal dynamical states of the system, which include transient curvature driven domain growth, persistent dynamics dominated by spiraling defects for Bloch walls, and labyrinthine pattern formation for Ising walls.Comment: 27 pages, 16 figure

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report Within the HARMONY Project

    Get PDF
    PURPOSEPatients with newly diagnosed multiple myeloma (NDMM) show heterogeneous outcomes, and approximately 60% of them are at intermediate-risk according to the Revised International Staging system (R-ISS), the standard-of-care risk stratification model. Moreover, chromosome 1q gain/amplification (1q+) recently proved to be a poor prognostic factor. In this study, we revised the R-ISS by analyzing the additive value of each single risk feature, including 1q+.PATIENTS AND METHODSThe European Myeloma Network, within the HARMONY project, collected individual data from 10,843 patients with NDMM enrolled in 16 clinical trials. An additive scoring system on the basis of top features predicting progression-free survival (PFS) and overall survival (OS) was developed and validated.RESULTSIn the training set (N = 7,072), at a median follow-up of 75 months, ISS, del(17p), lactate dehydrogenase, t(4;14), and 1q+ had the highest impact on PFS and OS. These variables were all simultaneously present in 2,226 patients. A value was assigned to each risk feature according to their OS impact (ISS-III 1.5, ISS-II 1, del(17p) 1, high lactate dehydrogenase 1, and 1q+ 0.5 points). Patients were stratified into four risk groups according to the total additive score: low (Second Revision of the International Staging System [R2-ISS]-I, 19.2%, 0 points), low-intermediate (II, 30.8%, 0.5-1 points), intermediate-high (III, 41.2%, 1.5-2.5 points), high (IV, 8.8%, 3-5 points). Median OS was not reached versus 109.2 versus 68.5 versus 37.9 months, and median PFS was 68 versus 45.5 versus 30.2 versus 19.9 months, respectively. The score was validated in an independent validation set (N = 3,771, of whom 1,214 were with complete data to calculate R2-ISS) maintaining its prognostic value.CONCLUSIONThe R2-ISS is a simple prognostic staging system allowing a better stratification of patients with intermediate-risk NDMM. The additive nature of this score fosters its future implementation with new prognostic variables

    Roughening and super-roughening in the ordered and random two-dimensional sine-Gordon models

    Get PDF
    We present a comparative numerical study of the ordered and the random two-dimensional sine-Gordon models on a lattice. We analytically compute the main features of the expected high-temperature phase of both models, described by the Edwards-Wilkinson equation. We then use those results to locate the transition temperatures of both models in our Langevin dynamics simulations. We show that our results reconcile previous contradictory numerical works concerning the super-roughening transition in the random sine-Gordon model. We also find evidence supporting the existence of two different low-temperature phases for the disordered model. We discuss our results in view of the different analytical predictions available and comment on the nature of these two putative phases.Publicad

    Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization

    Get PDF
    Chemical functionalization is a powerful approach to tailor the physical and chemical properties of two-dimensional materials, increase their processability and stability, tune their functionalities and, even, create new 2D materials. This is typically achieved through post-synthetic functionalization by anchoring molecules on the surface of an exfoliated 2D crystal, but it inevitably alters the long-range structural order of the material. Here we present a pre-synthetic approach that allows the isolation of crystalline, robust, and magnetic functionalized monolayers of coordination polymers. A series of five isoreticular layered magnetic coordination polymers based on Fe(II) centres and different benzimidazole derivatives (bearing a Cl, H, CH3, Br or NH2 side group) were first prepared. On mechanical exfoliation, 2D materials are obtained that retain their long-range structural order and exhibit good mechanical and magnetic properties. This combination, together with the possibility to functionalize their surface at will, makes them good candidates to explore magnetism in the 2D limit and to fabricate mechanical resonators for selective gas sensing
    corecore