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Phase-locked spatial domains and Bloch domain walls in type-II optical parametric oscillators
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We study the role of transverse spatial degrees of freedom in the dynamics of signal-idler phase locked states
in type-II optical parametric oscillators. Phase locking stems from signal-idler polarization coupling which
arises if the cavity birefringence and/or dichroism is not matched to the nonlinear crystal birefringence.
Spontaneous Bloch domain wall formation is observed numerically and the dynamics and chiral properties of
the fronts are investigated. Bloch walls connect homogeneous regions of self-phase-locked solutions by means
of a polarization transformation. The parameter range for phase locking is found analytically. The polarization
properties and the dynamics of walls in one and two transverse spatial dimensions are explained. The transition
from Bloch to Ising walls is characterized, the control parameter being the linear coupling strength. The wall
dynamics governs spatiotemporal dynamical states of the system, which include transient curvature driven
domain growth, persistent dynamics dominated by spiraling defects for Bloch walls, and labyrinthine pattern
formation for Ising walls.
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I. INTRODUCTION

Optical parametric oscillators~OPO’s! are versatile non-
linear optical devices@1# with a variety of possible applica
tions including as useful alternatives to lasers and the g
eration of light with nonclassical properties@2,3#. For optical
cavities with large Fresnel number, they have also becom
paradigm for the study of the transverse pattern forma
that arises in optical systems as a consequence of diffrac
and nonlinearity@4–6#. Experimental observations of suc
patterns have been reported@7#. Recent interest in thes
transverse structures in OPO’s arises from the study of m
roscopic manifestations of quantum phenomena in the sp
correlations present in these patterns@3#, as well as from the
study of spatially localized structures, such as domain w
and cavity solitons@8–15#, with possible applications in all
optical signal processing.

In a type-I OPO the signal and idler fields generated in
down-conversion process have the same state of linear p
ization. In a type-II OPO the signal and idler are orthog
nally polarized. The additional vectorial degree of freedo
of type-II OPO’s is very interesting from the point of view o
possible nonlinear phenomena. An interesting example
these possibilities has recently been observed experimen
and described theoretically@16,17# when considering direc
intracavity polarization coupling: It is possible to reach
situation of frequency degeneracy and phase locking
tween the orthogonally polarized signal and idler fields. T

*Permanent address: Departamento de Fı´sica, Facultad de Cien
cias Exactas y Naturales, Universidad Nacional de Mar del P
Funes 3350~7600! Mar del Plata, Argentina. Electronic addres
izus@mdp.edu.ar.

†URL: http://www.imedea.uib.es/PhysDept
1063-651X/2001/64~5!/056231~15!/$20.00 64 0562
n-

a
n
on

c-
ial

ls

e
ar-
-

of
lly

e-
s

is important because, without direct polarization coupling
type-II OPO remains nondegenerate at frequency degene
because of polarization. In this phase-locked situation
polarization of the output field is determined by the lock
value of the relative phase between signal and idler, wh
can be tuned by changes of experimentally accessible pa
eters. This device has been proposed as a candidate to
erate bright quantum entangled states. Our general aim
this paper is to consider such phase-locked states in a ca
of large Fresnel number, and to explore how the transve
spatial degrees freedom enter in the description of the p
nomenon. We find that equivalent phase-locked soluti
grow locally, forming spatial domains separated by dom
walls. We study the nature and dynamics of these dom
walls.

When considering transverse spatial degrees of freed
in a type-II OPO without direct polarization coupling the
are two different regimes. In one of them, characterized
an effective negative detuning@18#, a finite wave number is
selected at threshold. In the second regime, to be consid
in this paper, and which occurs for the opposite sign of
tuning, homogeneous solutions are selected at thresh
However, there is a continuum of possible solutions w
arbitrary relative phase between signal and idler. Theref
there are no possible domain walls. This is different fro
what happens in type-I OPO’s in which, for the equivale
regime of detunings, homogeneous solutions with two p
sible opposite phases can be selected. As a consequ
spatial phase domains appear in the system separated b
main walls @8,9,11–15,19,20#. Such domain walls are o
Ising type, that is, fronts for which the field vanishes at t
core of the wall@21#. Domain walls with the same symmetr
properties have also been reported for a variety of other
tical systems@22–28#. Direct polarization coupling in type-II
OPO’s breaks the invariance under changes of relative ph

a,
©2001 The American Physical Society31-1
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allowing for the formation of domain walls. These wall
however, can be of either Ising or Bloch type@10,21#. The
differences between Ising and Bloch walls are that there
two equivalent Bloch ways to connect two spatial doma
~symmetry breaking! and that Bloch walls can move spont
neously, leading to complicated persistent dynamical st
of the system. The transition from Ising to Bloch walls
controlled by the strength of the polarization coupling. Blo
walls have recently been predicted in other optical syste
@29#.

Direct polarization coupling between signal and idler
type-II OPO’s has been discussed in the literat
@16,17,30,31# by considering the insertion in the optical ca
ity of wave plates~such as quarter-wave or half-wave plate!.
In these previous studies the transverse spatial degree
freedom were not considered. The generic phenomena
scribed in this paper are expected for any form of dir
polarization coupling. However, we address specifically
signal-idler coupling arising from birefringence and dichr
ism of the cavity mirrors, although our equations give a g
eral representation of the possible forms of polarization c
pling. A small amount of birefringence or dichroism
always present due to weak cavity imperfections and th
fore the phenomenon considered here should be gene
present in type-II OPO’s.

The paper is organized as follows. Section II presents
general model equations, which are derived in detail in
Appendix. In Sec. III we calculate the OPO threshold a
describe the possible stationary phase-locked homogen
solutions, and their polarization properties are character
in terms of the Stokes parameters. In Sec. IV we disc
domain walls in one transverse spatial dimension~1D!: Ising
and Bloch walls, their dynamics, and the Bloch-Ising tran
tion are characterized. We also describe the polariza
properties of these walls. Sections V and VI describe
dynamical states in two transverse spatial dimensions~2D!,
governed, respectively, by Bloch and Ising walls. Our m
conclusions are summarized in Sec. VII.

II. EQUATIONS FOR A TYPE-II OPO WITH DIRECT
POLARIZATION COUPLING

A type-II OPO that consists of a ring optical resonat
filled with a birefringent, nonlinear quadratic medium, w
be considered. The device is externally pumped by a la
beam, uniform in the plane transverse to the cavity long
dinal axes and of frequencyvp . We take into account the
effects of birefringence and dichroism, which can be d
either to small imperfections of the cavity mirrors or
weakly birefringent~e.g., wave plates! or dichroic optical
devices inserted in the optical cavity. The derivation of t
governing equations is presented, for clarity, in the App
dix. For the sake of simplicity, the cavity birefringence a
dichroism are supposed to be due to only one of the res
tor mirrors. Note also that, in general, the mirror princip
axes~i.e., those along which the Jones matrix@32# that rep-
resents the polarization transformation is diagonal! are ro-
tated with respect to the principal axes of the crystal~i.e.,
those along which the susceptibility matrix is diagonal!. This
05623
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rotation angle (f) is an important experimental paramet
through which the strength of the effects we describe be
can be controlled. We note that the equations are obtaine
the mean field, paraxial, and single longitudinal mode
proximation for all the fields involved.

The equations that describe the time evolution couple
gether four field envelopes that depend on the transverse
ordinatesx,y: the linear polarization components of the i
tracavity field at the pump frequency,Bx,y(x,y,t), and the
signal and idler fields,Ax,y(x,y,t). The signal and the idler
can be either frequency degenerate or nondegenerate
pending on the frequency selection rules imposed by
combined effects of the parametric down-conversion,
cavity resonances, and the phase matching@33–35#, but they
are always polarization nondegenerate~type-II interaction!.
Hereafter the frequency degenerate~or quasidegenerate!
case, which is routinely obtained by tuning the pha
matching conditions@36#, will be considered. Moreover
with no loss of generality we setAx and Bx to be ordinary
polarized beams andAy andBy to be extraordinary polarized
@18#. Then the equations describing the OPO are

] tBx5gx8@2~11 iDx8!Bx1 iax8¹
2Bx1cx8By

12iK 0AxAy1E0#,

] tBy5gy8@2~11 iDy8!By1 iay8¹
2By1cy8Bx#,

] tAx5gx@2~11 iDx!Ax1 iax¹
2Ax1cxAy1 iK 0Ay* Bx#,

] tAy5gy@2~11 iDy!Ay1 iay¹
2Ay1cyAx1 iK 0Ax* Bx#.

~1!

The coefficientsgx,y ,gx,y8 ~effective cavity decay rates!,
Dx,y ,Dx,y8 ~effective cavity mode detunings!, and ax,y ,ax,y8
~diffraction coefficients! are defined in the Appendix@see
Eqs. ~A14!#. Some general remarks are worth making
show differences and common features between these c
ficients and those previously defined for a ‘‘perfect’’ cavi
~see, for example,@5,18#!. Due to the birefringence of the
nonlinear crystal and the dichroism of the cavity, the coe
cients of equivalent terms, in different equations, are sligh
different, even for frequency degenerate fields. In fact th
all depend on the relative refractive index and mirror tra
mittivity, which are polarization dependent@see Eqs.~A14!
for details#. The cavity birefringence can also cause the
fective detuning coefficientsDx ,Dy (Dx8 ,Dy8) to be different,
even at frequency degeneracy. Other parameters are the
linearity K0 @defined by Eq.~A15!# and the injected pump
amplitudeE0 which is taken as a real number. This gives
loss of generality because it is equivalent to fixing a comm
phase reference for all fields. For the sake of simplicity,
take the pump to be linearly polarized in a direction para
to the phase-matched component of the intracavity fieldBx .
Hence, the highly mismatched componentBy is neither
pumped nor nonlinearly coupled with the other componen
It is therefore very weakly involved in the dynamics, in sp
of the linear coupling withBx .
1-2
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PHASE-LOCKED SPATIAL DOMAINS AND BLOCH . . . PHYSICAL REVIEW E64 056231
The linear coupling coefficientscx,y ,cx,y8 account for the
dichroism and the birefringence of the cavity. They are

cx,y5
p1 id

T6p cos~2f!
sin~2f!,

cx,y8 5
p81 id8

T86p8 cos~2f!
sin~2f!, ~2!

where the plus~minus! sign applies for thex ~y! polarized
component. Although their derivation and the exact relat
to the physical parameters describing the cavity can be fo
in the Appendix it is useful to describe them briefly at th
stage. The mirror dichroism is represented by the ratio
tween the difference of the reflectivity and the average
flectivity at a certain frequency: 2p for Ax,y ~signal and idler!
and 2p8 for Bx,y ~pump components!. The mirror birefrin-
gence causes a different phase change: 2d for Ax,y and 2d8
for Bx,y . Finally, T (T8) is the average transmittivity of th
signal~idler! ~pump components! andf is the relative angle
of rotation between the crystal and cavity birefringence a
~the axes of dichroism are supposed to coincide with thos
the cavity birefringence for the sake of simplicity!. We note
that similar linear coupling terms between signal and id
were previously considered@16,17# by considering the inser
tion of wave plates~such as quarter-wave or half-wav
plates! in the cavity of a type-II OPO. In these cases t
general relationcx52cy* is satisfied.

III. THRESHOLD ANALYSIS AND HOMOGENEOUS
PHASE-LOCKED SOLUTIONS

A. Threshold analysis

The trivial solution of Eqs.~1! corresponds to the case
which a type-II OPO is below the threshold of signal ge
eration. It is given by

Ax5Ay50,

Bx5 c̃E0 ,

By5
cy8c̃E0

11 iDy8
, ~3!

where c̃5cr1 ic i5(11 iDy8)/@12Dx8Dy82cx8cy81 i (Dx8
1Dy8)#. The threshold for instability is determined by linea
izing Eqs.~1! around this solution and looking for values
the bifurcation parameterE0 ~the pump amplitude! for which
perturbations grow. The general type of perturbation
given, as usual, by plane waves exp(iqW•rW2lt), wherel(qW ) is
the growth rate of the perturbation andqW is its transverse
wave vector. We first recall the main results of the analy
for cx,y5cx,y8 50 @18#. In that case the trivial solution is
stable forE0,Ec , where

Ec5
~11 iDx8!

K0

A11D̃2 ~4!
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and where the effective detuningD̃ is defined as

D̃5
gxDx1gyDy

gx1gy
. ~5!

If the pump amplitude exceedsEc , the steady state become
unstable and signal and idler fields are generated. In part
lar, for negative effective detuning, pattern formation occu
as studied in Ref.@18#: for this reason hereafter only the ca
D̃.0 will be considered. In this case there is a Hopf bifu
cation in which homogeneous perturbationsqW 50W with

Im~l!5v52
gxgy

gx1gy
~Dx2Dy! ~6!

have the largest growth rate. At threshold, a family of hom
geneous oscillating solutions bifurcate from the trivial stea
state. Forcx,y50, Eqs.~1! are invariant under the transfor
mationAx→Ax exp(if), Ay→Ay exp(2if), and therefore the
relative phase between the homogeneous oscillating s
tions Ax ,Ay is arbitrary.

The introduction of the polarization couplingcx,yÞ0
breaks the invariance under changes of the relative ph
One expects that such coupling should be able to prod
phase-locked homogeneous stationary~i.e., zero frequency!
solutions above threshold. The linear stability analysis of
~3! is rather cumbersome whencx,yÞ0, and simple analyti-
cal expressions for the threshold analysis are not found.
linear stability of the trivial solution was investigated n
merically and a decrease of the threshold is observed w
the polarization coupling is included. As there is no clos
expression for the eigenvalues, it is in this case more con
nient to determine a threshold through the condition of ex
tence of the relative phase-locked solutions. Numerical
analytical results are coincident. We consider the spe
casecx5cy5cx

r 1 icx
i @(cx

r ,cx
i #PR) which through Eqs.~2!

can be seen to correspond to setting eitherf56p/4 or f
563p/4 ~i.e., to fixing the angle to the value that max
mizes the coupling strength! or to settingp5cx

r 50 ~i.e., no
dichroism!. We note that settingp50 reproduces a particu
lar case of the polarization coupling considered in@16,17#.

Let us call Āx5ax exp(icx) and Āy5ay exp(icy) the ho-
mogeneous stationary solutions; by substituting such form
las into Eqs.~1! one gets

sin~cy2cx!5
Dx2Dy

2A~cx
r 1cx

i Dx!~cx
r 1cx

i Dy!
,

cos~cy1cx!5
1

2K0E0uc̃u2AG
@~Dx1GDy!cr2~11G!ci

22AGcos~cy2cx!~cx
i cr2cx

r ci !#,

ax
25

1

4K0
2crG

@2K0E0AG~cr sin~cy1cx!2ci cos~cy1cx!!

12AGcx
r cos~cy2cx!2~11G!#,
1-3
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ay
25Gax

2 , ~7!

whereG5(cx
r 1cx

i Dx)/(cx
r 1cx

i Dy).
From Eqs.~7! we find two conditions for the existence o

phase-locked homogeneous stationary solutions. The
one comes from the fact that the phase difference among
solutions@see the first of Eqs.~7!# is real only if the modulus
of the right hand side is less than 1, that is, if

~Dy2Dx!
2<4~cx

r 1cx
i Dx!~cx

r 1cx
i Dy!. ~8!

This boundary in the complex planecx
r ,cx

i defines the limit
of the locking regime. Inside the boundary stationary so
tions do not exist. Physically speaking, the locking condit
means that stationary phase-locked solutions exist when
the direct polarization coupling breaking is large compa
with the difference in detunings. When the condition~8! is
not satisfied, numerical solutions show that there are
homogeneous states but their phase varies periodically
time. Such solutions indicate the persistence of the Hopf
furcation found forcx,y50 when the polarization coupling i
small.

The second condition for the existence of solutions ref
to the pump value above which there is signal and id
generation. The thresholdEc can be determined by settin
ax50 into Eqs.~7! and solving forE0. The final result is

Ec
25

1

4K0
2Guc̃u2

$~11G!21~Dx1GDy!214Gucxu2 cos2~cy

2cx!24AG cos~cy2cx!@cx
r ~11G!1cx

i ~Dx1GDy!#%.

~9!

The classification of the solutions found above this thresh
is easier to understand by considering the caseDx5Dy for
which the condition~8! is automatically satisfied. In this cas
and regardless of the value ofcx,y the relative phase shif
between phase-locked signal and idler can be either 0~in-
phase solution! or p ~out-of-phase solution! and the ampli-
tude of the fields is equal (ax5ay) since G51. Once the
phase shiftcy2cx is known it can be substituted into th
second of Eqs.~7! which can be solved forcy1cx . In prin-
ciple two solutions exist for each phase difference~in- and
out-of-phase cases!, due to the fact that the arccos is a mu
tivalued function in the range@2p,p#. However, if the
negative solutions forcy1cx are replaced in the third o
Eqs.~7! the result isax

2,0;E0. Therefore only positive so
lutions of the angle sum should be taken to guarantee
ax

2.0 above a certain thresholdEc . By substituting the
phase difference and sum into the third equation the am
tude is finally found. There are two equivalent possible
lutions for the in-phase case and two for the out-of-ph
case. The existence of these two equivalent solutions
consequence of the symmetry (Ax ,Ay)→2(Ax ,Ay) of Eqs.
~1! which is preserved forcx,yÞ0. In summary, we find in-
phase solutions (Ax5Ay) and out-of-phase solutions (Ax5
05623
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2Ay). Each of the in- and out-of-phase cases includes
equivalent solutions which we denote as the1 and2 solu-
tions satisfyingAx,y

1 52Ax,y
2 .

In the general case withDxÞDy solutions are no longe
strictly in or out of phase. Nonetheless, well within th
phase-locked regime where the detuning coefficients
small compared with the strength of the polarization co
pling, the solutions one finds are close to being in or out
phase. Therefore we will still use in this situation the nam
of in- and out-of-phase solutions even if this is not genera
a rigorous description. Other situations can occur close to
limit of the locking regime fixed by Eq.~8!. For example, for
cx5cy and a purely dichroic mirror,cx

i 50 so thatG51 and
signal and idler have the same amplitudeax5ay . At the
onset of the locking regimeuDx2Dyu52ucx

r u, and it follows
from the first of Eqs.~7! that the two fields are locked at
phase differencecy2cx56p/2. In any case, for each
locked value of the phase difference there are two equiva
1 and2 solutions satisfyingAx,y

1 52Ax,y
2

A bifurcation diagram for the homogeneous solutions
a generic case withDxÞDy is presented in Fig. 1. The se
lection of the solution that actually bifurcates, either in pha
or out of phase, is determined by the relative value of
thresholdEc for each solution. Equation~9! shows that the
threshold is lower if the term proportional to cos(cy2cx) is
positive; for the in-phase solution this occurs ifcx

r .0,cx
i

.0 and vice versa for the out-of-phase solution ifcx
r ,0,cx

i

,0. An example of the thresholds calculated for the in-ph
and out-of-phase solutions, as a function ofcx

r 5cx
i , and for

the same detuning values as in Fig. 1, is shown in Fig
Note that there is a range of values of the couplingcx,y in
which Eq.~8! is not satisfied and there is no threshold for t
emergence of the phase-locked solutions. But, in the rang
which Eq. ~8! holds, the lower threshold decreases as
coupling strengthucx,yu increases, allowing parametric down
conversion for lower values of the external pump with r
spect to the reference case (cx,y50). Note also that the roles
of the two solutions are exchanged if the sign ofcx,y is
reversed. Only the solutions with lower threshold are sta
From numerical investigation we learn that even in the n
extended ~dynamical! system the solutions with highe
threshold are unstable. We finally note that our numeri
integrations show that, when switching on the pump to

FIG. 1. Bifurcation diagram of the homogeneous solutio
~solid curve stable, dashed curve unstable!. Dotted line is the trivial
unstable solution amplitude. Parameters areK051, cy5cx

50.05(11 i ), cx85cy850.1, Dx85Dy850, Dx50.01, Dy50.03.
1-4
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PHASE-LOCKED SPATIAL DOMAINS AND BLOCH . . . PHYSICAL REVIEW E64 056231
value for which both the in-phase and out-of-phase soluti
exist, the solution that is always selected is the one w
lowest threshold. Therefore, in practice we find only the t
equivalent solutions of lowest threshold.

B. Polarization properties of the phase-locked solutions

An important question is the polarization state of t
phase-locked homogeneous stationary solutions that we
just described. It is useful to consider the polarization rep
sentation given by the normalized Stokes parameters, defi
as @32#

s15
uAxu22uAyu2

uAxu21uAyu2
,

s25
AxAy* 1Ax* Ay

uAxu21uAyu2
,

s35
2 i ~AxAy* 2Ax* Ay!

uAxu21uAyu2
. ~10!

These real parameters are sufficient to characterize any
of polarization of a monochromatic field by assigning to t
field a point in the Poincare´ sphere. The equator of th
sphere (s350) corresponds to linearly polarized states a
the poles of the sphere (s15s250,s3561) correspond to
states of opposite circular polarization. By replacing the
mogeneous solutions in Eqs.~10!, the state of polarization o
our phase-locked solutions is represented by

s̄15
12G

11G
,

s̄25
2AG

11G
cos~cy2cx!,

s̄352
2AG

11G
sin~cy2cx!. ~11!

FIG. 2. Threshold of instabilityEc for the trivial stationary so-
lution @Eq. ~3!#: solid ~dashed! curve is the threshold of the in
~out-of-!phase solution. Herecy5cx and the other parameters a
the same as in Fig. 1.
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These equations show that the polarization state of the o
cal field is determined by the locked value of the phase
ference between signal and idler. ForDx5Dy , G51 and
sin(cy2cx)50 so that (s̄1 ,s̄2 ,s̄3)5(0,61,0), where the plus
~minus! sign applies for the in-~out-of-!phase solution. This
means that the two possible phase-locked solutions are a
ally linear and orthogonal polarizations whose azimu
angles areu5a tan(s̄2 / s̄1)/256p/4. We mentioned before
that there are two equivalent solutions for each of the in- a
out-of-phase solutions. These correspond to linearly po
ized states along the same direction, but in opposite sen
and they have the same Stokes parameters. The Stoke
rameters are determined by the relative phase, while the
equivalent solutions have a different global phase. For
ample, in the two equivalent in-phase solutionss̄251 and
Re(Ax)5Re(Ay), but in one of the solutions Re(Ax).0 and
in the other one Re(Ax),0.

When the detunings are different, the homogeneous s
tions become elliptically polarized beams (s̄3Þ0). However,
if the detunings are small (cx

i Dx,y!cx
r ) G.1 still and is well

within the locking regime sin(cy2cx).0. In these circum-
stances the state of the beam is close to being linearly po
ized (s̄3.0) with azimuth angles close to6p/4. However,
it is important to note that by changing the detuning para
eters and the strength of the polarization coupling it is p
sible to explore arbitrary states of polarization. These sta
are determined from Eq.~11! in terms of the phase differenc
of the locked state. For example, in the case mentio
above of a purely dichroic mirror,cx

i 50, we haveG51 and

therefores̄150. In this case, and at the onset of the locki
regime,s̄250, s̄3561 so that the locked solution is circu
larly polarized. Going into the locking regime, the polariz
tion state will evolve toward linearly polarized states b
keepings̄150.

The threshold decrease due to the polarization coup
discussed above has now a simple physical interpretat
Let us recall that the conditioncx5cy means that the relative
angle of inclinationf must be one of these values:@6p/4,
63p/4#. In particular, through Eqs.~2!, cx

r (cx
i ) is positive

for p.0 (d.0) andf5p/4,23p/4 or p,0 (d,0) and
f52p/4,3p/4. WhenAx andAy are in phase, the total field
is linearly polarized atp/4 ~or 3p/4) rad with respect to the
crystal axes. The conclusion that can be drawn is that
intracavity field is actually oriented along one of the princ
pal axes of the cavity birefringence dichroism. The sa
occurs for the out-of-phase solution which is a beam linea
polarized at an angle2p/4 ~or 3p/4) rad and thus the role
of the coefficients is exchanged. So the polarization selec
is always aligned with one of the cavity principal axes.

IV. PHASE POLARIZATION DOMAIN WALLS IN ONE
TRANSVERSE DIMENSION: BLOCH-ISING

TRANSITION

In the previous section we discussed the existence of
equivalent homogeneous solutions which we named the1
and2 solutions. These are the solutions with lowest thre
1-5
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old, while we mentioned that other solutions of high
threshold are seen to be unstable. When the OPO switche
after setting the pump to a value above its threshold va
given by Eq.~9!, either the1 or 2 solution can be selecte
since they have the same growth rate. When the transv
spatial degrees of freedom are taken into account, this se
tion, or spontaneous symmetry breaking of the homogene
solution, can be local, with a different solution emerging
different spatial regions. It is then expected to find dom
walls that separate the spatial domains with different
equivalent solutions. For either the signal or idler wh
changes when going from one solution to the other is just
sign. For example,Ax takes valuesÃ and 2Ã at opposite
sides of the wall. Therefore the walls can be considered
phase walls of a complex field like the ones described
type-I degenerate OPO’s@11,13,15#. When considering the
signal and idler the domain wall separates two solutions w
polarization properties determined by the locking of the re
tive phase of the two fields. One might then talk about p
larization walls. However, we have already mentioned t
the1 and2 solutions have the same Stokes parameters,
there is a change in the global phase of the polarization s
In this sense we refer to these walls as phase polariza
walls. In any case, the polarization state might present in
esting features in the core of the wall.

Phase domain walls for a complex field can be of Ising
Bloch type@10,21#. As a general characterization, in an Isin
wall there is a single field profile connecting one homog
neous solution with a second equivalent one, while we t
of a Bloch type wall when there are two different field pr
files ~walls! connecting the two solutions. A Bloch wall im
plies, therefore, spontaneous symmetry breaking for the
main wall. In the following we study Ising and Bloch doma
walls, the transition between them, and the polarization pr
erties in one transverse spatial dimension. The characte
tion of some properties of these walls is much more clea
one dimension. Other features associated with tw
dimensional phenomena are postponed to the following
tions.

Numerical integration@37# of Eqs. ~1! confirms that sta-
tionary uniform domains of the1 or 2 solutions form spon-
taneously starting from a randomly and weakly perturb
trivial steady state~3!. Well within the locking regime, the
domain walls are of the Ising type, but on changing the v
ues ofcx,y and moving toward the boundary of the lockin
regime we find a transition from Ising to Bloch domain wa
@10#. An example of an Ising wall~IW! is presented in Fig.
3~a!. It connects the1 solution atx→2` with the 1 solu-
tion at x→`. By plotting the numerically obtained solutio
in the complex plane@Re(Ax), Im(Ax)] @Fig. 3~b!# it is clear
that the IW is characterized by a zero crossing of the fie
An example of a 1D optical Bloch wall~BW! is instead
given in Figs. 4~a! and 4~b!; note that the field amplitude
~represented by the vector modulus in the complex pla!
never goes to zero and the wall consists of an almost p
phase rotation ofp rad. The phase can rotate in two possib
senses along the interface, clockwise or counterclockwis
the complex plane. This characteristic is usually called
wall chirality and it is defined to be positive for clockwis
05623
r
on
e,

rse
c-

us

n
t
t
e

as
r

h
-
-
t
ut
te.
on
r-

r

-
lk

o-

-
a-
n
-
c-

d

l-

.

e
re

in
e

rotation, or negative for counterclockwise rotation. The
fore, there exist two equivalent domain walls of oppos
chirality for Ax . One of the two appears by spontaneo
symmetry breaking. In the example of Fig. 4 the wall
negative chirality forAx is selected.

In the example of the Ising wall of Fig. 3 the paramete
are such that we are well within the locking regime and
domain wall connects homogeneous equivalent in-phase
lutions in which the locked phase difference is close to z
(cy2cx.20.122). The shape of the fieldAy across the
domain wall is similar to the one ofAx . The situation is
different for the example of the Bloch wall in Fig. 4. Th
parameters correspond here to a situation close to the bo
ary of phase locking and the homogeneous1 and 2 solu-
tions have a locked phase differencecy2cx5p/2. In addi-
tion, Bloch walls for this system are characterized by the f
that the wall profile for the fieldAy has always opposite
chirality to that ofAx , as seen in the example of Fig. 4~b!.

The polarization characteristics of Ising and Bloch d
main walls are very different. For an Ising wall the Stok
parameters are seen to remain constant across the core
wall. This is due to the fact that the phase differencecy
2cx remains fixed to its locked value while going from th
2 to the 1 solution across the wall. On the contrary, in

FIG. 3. Numerical solution of Eqs.~1! in one spatial dimension
showing an example of an Ising wall:~a! Solid ~dashed! curve is the
real ~imaginary! part of the fieldAx as a function of the transvers
coordinate;~b! the same wall is represented in the complex pla
@Re(Ax),Im(Ax)# as a solid line. Dashed curve is the Ising wa
associated with the fieldAy . The parameters aregy5gy851, gx

5gx851.001, Dx85Dy850, Dx50.01, Dy50.03, ax85ay850.125,
ax5ay50.25, K051, E051.25, cx85cy850.01(11 i ), andcx5cy

50.082.
1-6
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PHASE-LOCKED SPATIAL DOMAINS AND BLOCH . . . PHYSICAL REVIEW E64 056231
Bloch wall the locked value of the phase differencecy2cx
is a function of the position while moving from one side
the wall to the other. The consequence is that the Sto
parameters have a nontrivial space dependence acros
wall determining peculiar polarization characteristics of t
core of the wall. As examples of such polarization charac
istics we show in Fig. 5 the variation of the Stokes para
eters across two examples of Bloch domain walls. In F
5~a! we consider a Bloch wall that connects two linea
polarized states. In Fig. 5~b!, which corresponds to the wa
of Fig. 4, the wall connects two elliptically polarized stat
which are close to being circularly polarized.

In Fig. 5~a! the two asymptotic states forx→6` are
in-phase solutions characterized by (s̄1 ,s̄2 ,s̄3)5(0,1,0) cor-
responding to a linearly polarized state of azimuthu5p/4.
At the core of the wall (s̄1 ,s̄2 ,s̄3)5(0,21,0) which corre-
sponds to a state of orthogonal linear polarization. Note
as the phase solution rotates byp rad the Stokes paramete
s1 ,s2 ,s3 return to the initial values, i.e., the polarization
the total field is the same on each side of the wall, as pr
ously mentioned. Along the wall the polarization chang
the field becoming elliptically polarized, but not in an arb
trary manner. The transformation is forced to occur fors1
.0, i.e., the azimuth angle of the ellipse is fixed in pract
to u56p/4. For x,0, and close to the core of the wa
s3.21, indicating a state close to being left circularly p
larized, while forx.0, and close to the core of the wa

FIG. 4. Numerical solution of Eqs.~1! in one spatial dimension
showing a Bloch wall.~a! Solid ~dashed! curve is the real~imagi-
nary! part of the fieldAx as a function of the transverse coordina
~b! the same wall is represented in the complex pla
@Re(Ax),Im(Ax)# as a solid line. Dashed curve is the Bloch wa
associated with the fieldAy . The parameters are the same as in F
3, exceptcx5cy50.01.
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s3.1, indicating a state close to being right circularly pola
ized. In terms of the Poincare´ sphere, the representative poi
moves from a point at the equator through the vicinity of t
south pole to the opposite point at the equator, and bac
the original point through the vicinity of the north pole. Th
change of ellipticity across the wall,h(x)5arcsin(s3)/2,
yields a natural interpretation of the chirality: for a BW o
negative chirality, like the one shown here, the ellipticity
the polarization state first decreases to a maximum nega
value, going, as we move to the other side of the wall, t
maximum positive value. For a BW of positive chirality th
excursion in ellipticity goes in the opposite direction.

In Fig. 5~b! the variation of the Stokes parameters ind
cates a sequence of elliptically polarized states with t
points in the core of the wall at which the state becom
linearly polarized (s350). The change in polarization stat
still occurs fors1.0 because, sincecx

i 50, still G51. The
representative point moves now in the Poincare´ sphere from
a point close to the north pole, to the vicinity of the sou
pole, crossing the equator, and back to the original po
along the other side of the sphere, again crossing the equ
An opposite sense of motion along the sphere would co
spond to an opposite chirality of the wall.

We note that a quantitative precise description of
variation of the Stokes parameters can generally be given
invoking the relation, which follows from symmetry consid
erations,Ax. iAy* pointwise along the wall. The Stokes pa
rameters as functions of the spatial variation of the ph

;
e

.

FIG. 5. Variation of the polarization along a Bloch wall, repr
sented by means of the Stokes parameters~10! as they result from a
numerical solution:s1(x) ~solid curve!, s2(x) ~dashed!, s3(x) ~dot-
ted!. ~a! The Bloch wall separates linearly polarized states. Para
eters are the same as in Fig. 3, exceptgx5gx851, Dx5Dy50.03,
cx85cy850.01, cx5cy50.02. ~b! The same representation for th
Bloch wall of Fig. 4, which separates elliptically polarized state
1-7
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IZÚS, SAN MIGUEL, AND SANTAGIUSTINA PHYSICAL REVIEW E64 056231
cx(x) are then given by@substituteAx5 iAy* into Eqs.~10!#:

s1~x!.0,

s2~x!.sin@2cx~x!#,

s3~x!.2cos@2cx~x!#. ~12!

We next turn to considering the dynamics of the dom
walls, which is also useful to determine the transition b
tween Ising and Bloch walls. Isolated Ising walls in 1D a
stable and remain stationary. The dynamics of 1D BW’s
pends critically on the values of the cavity decay rates
the detuning. ForgxDx5gyDy , 1D BW’s do not move: they
are stable stationary interfaces between equivalent unif
domains. A similar situation takes place in the potential lim
of the 1D parametrically forced complex Ginzburg-Land
equation~PCGLE! where stationary BW’s have been foun
analytically @21,38#. On the contrary, forgxDxÞgyDy walls
of different chirality move in opposite directions, as al
happens outside the potential limit of the PCGLE. The
locity of the resulting BW depends on the value of the p
rameters; in particular, it depends strongly oncx,y . In Fig. 6
the velocity of BW’s as a function ofcx ~real!, for selected
values of the other parameters, is shown as it results f
numerical solutions. For smallcx BW’s are not stable be
cause we are outside the locking regime@Eq. ~8! is not sat-
isfied#; for larger values the velocity decreases on increas
cx and finally it vanishes. The vanishing of the velocity ide
tifies the transition point at which a BW decays into an IW
This transition is continuous, i.e., the amplitude of the w
solutions, which is almost constant for BW’s for smallcx ,
shows larger and larger variations as the transition is
proached. The amplitude of the signal field~and also the
idler! becomes small at the core of the wall and it eventua
reaches zero. At this point BW’s and IW’s exchange th
stability and only standing IW’s are found beyond that cr
cal value. The conclusion is that in the regime of the para
eter space for which BW’s are stable IW’s are unstable,
vice versa.

In addition to the transition from Bloch to Ising type, th
strength of the direct polarization coupling coefficientscx,y

FIG. 6. Velocity of a BW as a function ofcx
r (cx

i 50) as given
by numerical simulations of Eqs.~1! in the regimegxDxÞgyDy .
The parameters are the same as in Fig. 3, except the valuescy

r

5cx
r . For the last three points in the figure~corresponding to Ising

walls! the velocity is zero. The dotted line indicates the onset of
locking regime.
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also controls the wall width. Moving well within the locking
regime the width becomes small, while it diverges ascx,y
→0.

We finally mention that other forms of stable localize
structures or domain walls are sustained in this system,
though they do not appear spontaneously when starting f
a weakly perturbed trivial steady state~3! and a pump value
above threshold. They can be formed far above thresh
mediated by the unstable phase-locked solutions of hig
threshold discussed in Sec. III. A first example, shown
Fig. 7~a! is a stable 1D localized structure in the backgrou
of a 1 in-phase solution. This structure is generated from
steplike initial condition, shown in Fig. 7~b!, which connects
the stable1 in-phase solution with the unstable1 out-of-
phase solution. The dynamical evolution of this unsta
configuration leads to the localized structure. A second
ample shown in Fig. 7~c! is a kind of domain wall that con-
nects, as in the Ising and Bloch walls discussed above,
equivalent1 and2 solutions of the phase-locked solution
of lowest threshold. The difference from our previous Isi

e

FIG. 7. Examples of multiple hump stable solutions. So
~dashed! curve is the real~imaginary! part of the fieldAx . In ~a! the
field comes back to the initial state;~b! initial condition used in~a!.
Here Re(Ax)5Im(Ax) for x,0. ~c! IW with two crossings of the
zero amplitude point. Parameters areax50.253 75,ay50.246 25
ax85ay850.125, Dx85Dy850, Dx5Dy50.02, gx85gy851, gx

50.985,gy51.015,cx85cy850.01, cx5cy50.21 i0.02.
1-8
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PHASE-LOCKED SPATIAL DOMAINS AND BLOCH . . . PHYSICAL REVIEW E64 056231
walls consists in a more complicated structure of the core
the wall. In this case the fieldAx vanishes at three points i
the core of the wall. This type of domain wall emerges d
namically from a similar initial condition to the one shown
Fig. 7~b!, but with a different sign of the unstable solution
the step: The initial steplike condition connects the stable1
in-phase solution with the unstable2 out-of-phase solution

V. CHARACTERIZATION OF 2D BLOCH WALLS

In our 2D numerical solutions@37# with random initial
conditions around the trivial unstable solution we also o
serve the spontaneous formation of BW’s which are n
lines in the transverse plane. These walls evolve dynamic
as described below. An additional feature of BW’s in 2D
that the domain walls can emerge with opposite chirality
different spatial regions along the wall. The points on t
wall where the chirality changes sign are singular points:
these points the phases of the signal and idler fields are
defined and the amplitudes go to zero, i.e., they can be c
sified as topological defects. The BW, at that particu
point, actually degenerates into an IW. A snapshot of typ
transient transverse patterns generated by the Bloch wa
shown in Fig. 8 for the componentAx . The two equivalent
1 and 2 phase-locked homogeneous solutions are re
sented in Fig. 8~a! by regions of different intensity on a gra
scale (Ax

6). Likewise, the segments along the walls of d
ferent chirality are represented, respectively, by black
white segments (B6) in Fig. 8~a!. The defects where the
changes of chirality take place can be observed as black
in the intensity field@Fig. 8~b!#. Note that, except for the
defects, the field intensity is almost constant in the doma
and only slightly modulated close to the core of the wall. T
phase field, shown in Fig. 8~c!, demonstrates that phase d
fects with topological charge61 occur at the points o
change of chirality on the wall. This structure for transve
Bloch domain walls is observed for a wide range of para
eters. A typical expanded vision of the amplitude of the fie

FIG. 8. A snapshot at timet51600 of the fieldAx(x,y,t), spon-
taneously generated from random initial conditions close to
trivial steady state.~a!, ~b!, and~c! show, respectively, the real par
the intensity, and the phase. Black and white segments in the w
(B6) in ~a! correspond to opposite senses of rotation of the ph
~chirality!. The black points in~b! are the defects, where signal an
idler amplitude vanishes. The phase varies between2p ~black! and
p ~white!. Intermediate values are showed in a linear scale of
gray levels. The parameters are the same as in Fig. 7, excepDx

50.01, Dy50.03, cx85cy850.025(12 i /2), and cx5cy50.02(1
1 i ).
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in the vicinity of a defect is shown in Fig. 9. The correspon
ing snapshot for the fieldAy shows the same structure wit
walls and defects at the same positions as forAx .

There are different effects determining the dynamics
BW’s in 2D. A first mechanism is the one found in 1D
related to detuning and damping coefficients. However,
2D the dynamics is also influenced by the curvature of
walls and the presence of field defects. In what follows t
main regimes are identified. In the first regime, called
regime of domain growth, curvature effects dominate. T
leads to the complete disappearance of all fronts, all defe
and all domains except one, the final state being a homo
neous solution. The second regime is characterized by a
sistent dynamics in which defects are deeply stable obje
while domains and walls are continuously generated
annihilated.

A. Regime of domain growth

For gxDx5gyDy , flat 2D BW’s are stable structures. Th
corresponds to the fact that 1D walls, for the same value
the parameters, do not move. The transient dynamics is
an ordering process mainly controlled by the curvature
fects in which the walls evolve by reducing curvature. Th
leads to the growth of one of the two equivalent solutions
the expense of the other and the annihilation of all the
fects. This process is shown in Fig. 10, where snapshot
different times are shown. The images of the upper row sh
the intensity of the polarization componentAx , while in the
pictures of the lower row the real part of the same field
presented. Slowly all the defects and walls disappear and
final state is a homogeneous phase-locked solution.

In this regime the normal velocity of the fronts is dete
mined by the local curvature of the wall. This is demo
strated by Fig. 11 where the evolution of the square radiu
a domain surrounded by a circular BW has been determin
The result is a growth lawR(t).t1/2 characteristic of curva-
ture driven domain growth@26#. Similar structures, annihila
tion dynamics, and dynamical exponents for the growth l
of BW domains have been reported in the description of
ordering process of a nonconserved anisotropicXY spin sys-
tem in 2D @38#.

e

lls
e

6

FIG. 9. Amplitude of theAx field as a function of the transvers
coordinates (x,y) in the vicinity of a defect. The parameters are t
same as in Fig. 3, exceptgx5gx851, cx50.02(11 i /2), cy50.02.
1-9
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FIG. 10. The domain growth regime (gxDx

5gyDy) is presented by means of snapshots
different times: ~a! t5200; ~b! t5600; ~c! t
51000; ~d! t52000. The upper row shows th
evolution of the intensity ofAx(x,y,t) while in
the lower row the real part of the same field
shown. The initial condition is random and th
parameters are the same as in Fig. 3, exceptDy

50.010 02,g151.002, cx5cy5cx85cy850.02(1
1 i ).
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B. Regime of persistent dynamics

More unusual of our system is the regime found
gxDxÞgyDy . Let us recall that in this regime 1D optica
BW’s of different chirality move in opposite directions whil
IW’s ~characterized by a point of zero amplitude! do not
move. The dynamics in 2D is reminiscent of this behavior
fact the defects are notably stable like the corresponding
IW’s, while BW’s of different chirality move in opposite
directions. The combination of these two effects is that BW
spiral around the defects; this phenomenon was also
served for BW’s in other physical systems@39#. The spiral-
ing dynamics of an isolated defect is shown in Fig. 12 o
tained with a flat-top profile for the pump beam. The stabil
of the defects with these physical boundary conditions
remarkable. This is an important result because stabiliza
of optical vortices has always been critical in lasers and n
linear optical systems@40#. When many of these defects aris
spontaneously from random initial conditions around
trivial unstable solution, the system becomes trapped i
complicated state of persistent dynamics in which a hom
geneous state is never reached. An understanding of
persistent dynamics is easier for particular initial conditio
In the example shown in Fig. 13 the initial condition is a fl
BW with equally spaced defects along the wall. This giv
rise to segments of different chirality along the wall that st
moving in opposite directions. The net result, after collisi
of spiraling BW’s of the same chirality, is the periodic emi

FIG. 11. The asterisks show the time evolution of the squ
radiusR2 of a circular BW domain, in the growth domain regim
as they result from the numerical solution. The solid line is a lin
interpolation of numerical data. Parameters are the same as in
10, exceptcx85cy850.01(11 i ) andcx5cy50.02.
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sion, in each direction, of BW’s of alternating chirality. Th
defects remain stable and walls are regenerated by the
raling process. The dynamical process that we have just
scribed becomes fuzzy close to the Ising-Bloch transition
this regime of parameters the amplitude of the field becom
very small at the core of the wall and the clear distincti
between point defects and wall segments of different chi
ity is lost.

VI. 2D ISING WALLS

Beyond the transition from BW’s to IW’s the latter appe
spontaneously separating spatial domains of the1 and 2
solutions, but their dynamics and the asymptotic state of
system still depend strongly on the strength of the dir
polarization coupling. As in the case of BW’s, we find fo
IW’s two main regimes: a regime of domain growth and o
of labyrinthine pattern formation.

For coupling values close to the Bloch-Ising transition
flat Ising wall is stable. The transient dynamics is then co
trolled by the curvature of the walls. Curvature reducti
leads to domain growth much in the same way as we alre
described for BW’s in the corresponding regime. In F
14~a! typical time series of snapshots of the transverseAx
field is shown. The final asymptotic state is homogeneo

e

r
ig.

FIG. 12. Time evolution of one spiral of BW’s around a defe
In the left column the amplitude ofAx(x,y,t) is represented while
in the right column the real part of the same field is shown.~a! t
5560; ~b! t51120. The parameters are the same as in Fig. 9.
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PHASE-LOCKED SPATIAL DOMAINS AND BLOCH . . . PHYSICAL REVIEW E64 056231
Similar dynamics has already been reported in a typ
DOPO above threshold@8,11,20#, the only difference being
the vectorial character of the field in this case.

Far from the Bloch-Ising transition and moving deep
into the locking regime transverse labyrinthine patterns
spontaneously formed in the system starting from a rand
perturbation of the trivial unstable solution@26,27#. Snap-
shots of the evolution of a pattern of this type are shown
intensity and real part in Fig. 15. Note that the time evolut

FIG. 13. Time evolution of a BW, spiraling around an array
defects imposed as an initial condition:~a! t50; ~b! t51000; ~c!
t51150;~d! t51550. In the left column the amplitude ofAx(x,y,t)
is represented while in the right column the real part of the sa
field is shown. The parameters are the same as in Fig. 7 ex
Dx50.01, Dy50.03, cx5cy50.025, andcx85cy850.01.
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of labyrinthine patterns is very slow. The creation of a lab
rinthine pattern stems from the fact that, in this regime
parameters, flat Ising walls~i.e., with no curvature! are
modulationally unstable. Roughly speaking the finger grow
is associated with a band of modulational frequencies of
front curvature that tend to increase their curvature. This
reminiscent of what has been reported for intracavity sec
harmonic generation@23# and vectorial Kerr resonators@26# .
In order to illustrate the modulational instability, the evol
tion of an initially perturbed Ising flat wall is shown in
Fig. 16.

VII. CONCLUSION

In conclusion we have demonstrated that Bloch walls c
be found in nonlinear optical systems, in particular in type
optical parametric oscillators. They appear when there ex
a small birefringence and/or dichroism of the cavity alo
axes that do not coincide with those of the nonlinear crys
These effects introduce a linear coupling between the sig
and the idler which causes self-phase-locking of the t

e
pt

FIG. 15. Formation of a labyrinthine pattern in the regime f
which IW’s are stable but their curvature is modulationally u
stable: the upper row shows the intensity pattern and the lower
Re(Ax) for ~a! t575; ~b! t51500. The initial condition is random
and the values of the parameters are the same as in Fig. 14, e
Dy50.010 01,cx5cy5cx85cy850.3i .
ed

s

of
ept
FIG. 14. Snapshot at different times, observ
in the coarsening regime:~a! t5300; ~b! t5900;
~c! t51900;~d! t53000. The upper row present
the intensity pattern and the lower row Re(Ax).
The initial condition is random and the values
the parameters are the same as in Fig. 3, exc
cx5cy50.09.
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FIG. 16. Modulational instability of an ini-
tially flat IW: the upper row showsuAx(x,y,t)u2

and the lower row the real part of the same fie
In this regime 1D Ising fronts are stable. The va
ues of the parameters are the same as in Fig.
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fields. There exist two possible steady state solutions, c
acterized by a phase shift ofp rad of both polarization com
ponents, and thus different domains spontaneously form
which one or the other solution is selected. The separa
walls can be of either the Bloch or the Ising type depend
on the strength of the coupling coefficient. For small valu
Bloch walls are stable and appear spontaneously abo
predicted threshold out of a random perturbation of
trivial steady state. Bloch walls have been characterized
both one and two dimensions. In one dimension a phys
interpretation of Bloch walls is given in terms of polarizatio
variations that connect two homogeneous states that re
sent the same state of polarization. The chirality is inst
related to the ellipticity variations. Multiple hump Ising wal
have also been found starting from particular initial con
tions. In two dimensions, Bloch walls can possibly have w
sections of different chirality, i.e., where the phase rotate
two possible ways, clockwise or counterclockwise in t
complex plane. Where the chirality changes sign the ph
has defects, where the field amplitude is zero, and the
degenerates into an Ising one. Two dynamical regim
which depend on the decay rates and the detunings,
found: in the first one, the wall dynamics is dominated by
curvature and a final homogeneous state is reached; in
second regime, the walls spiral around stable defects
persistent creation and annihilation of fronts is observed.
transition from Bloch to Ising walls has also been observ
when the linear coupling strength is increased; the transi
is characterized by larger and larger variations of the am
tude of the field close to the core of the wall and the fact t
the walls stop moving. Ising wall dynamics has also be
considered, in particular, the curvature modulation insta
ity, which leads to the creation of a labyrinthine pattern.
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APPENDIX

In this appendix the derivation of Eqs.~1! is presented.
The main difference with respect to previous derivations
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mean field equations for OPO’s is the inclusion of the effe
of dichroic and birefringent mirrors. In order to simplify th
model, let us assume that only one out of the four mirrors
the ring cavity is birefringent and dichroic. This means th
in a proper system of orthogonal axes, the matrixM, which
represents the transformation of two orthogonally polariz
components of a beam, in the Jones formalism@32# is

M5S r 1e2 ic1 0

0 r 2e2 ic2
D 5re2 isS ~11p!eid 0

0 ~12p!e2 idD
~A1!

where r 5(r 11r 2)/2,p5(r 12r 2)/(2r ),s52(c11c2)/2,
andd5(c22c1)/2. The dichroism, i.e., the different reflec
tivity of the mirror for different polarizations (r 1Þr 2), im-
plies thatpÞ0, while the birefringence is represented by t
fact thatc1Þc2, i.e., the phases of the reflected compone
undergo a different change (dÞ0).

A first important remark to make is that the mirror aniso
ropy axes might not coincide with the axes of the nonline
crystal, which is also birefringent in order to realize th
phase matching between the pump and the generated fi
In other words the anisotropic crystal has its own prefer
polarization axes that can be rotated by an anglef with
respect to the mirror principal axes~those for which the mir-
ror matrix is diagonal!. Therefore, when passing from th
propagation in the cavity axes reference frame to that in
crystal a rotation, represented by the matrix

R5S cosf 2sin f

sinf cosf D , ~A2!

has to be applied. At the end of the propagation in the n
linear medium an inverse transformation (R21) is needed to
restore the reference frame of the cavity axes.

The genericn11 round trip in the cavity for the signa
and idler vector fields of the previous stepn (EW n) is then
represented by the following transformation~all mirrors ex-
cept the last one are perfectly reflective, i.e., their matri
are all equal to the identity matrix!:

EW n115MR21f ~REW n!, ~A3!
1-12
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wheref (•) is the result of the propagation inside the nonl
ear medium. A similar formula can be written also for t
pump vector fieldFW n which, in principle, has both polariza
tion components. Usually one component does not par
pate in the nonlinear dynamics~it is not phase matched! and
it is neglecteda priori. In this case, due to polarization cou
pling, it is included in the model although the final result
that, under not very restrictive hypotheses, its effects can
neglected.

The output of the functionf (•) is the vector field as it
results after the integration of a set of nonlinearly coup
propagation equations, i.e., it involves products ofEW n and
FW n . Hereafter only the signal and idler vector fieldEW n equa-
tions will be considered; similar calculations can be repea
for the pump components.

Let us remark that the optical carrier frequency of ea
component has already been removed~i.e., envelope equa
tions@36# are searched for! and that the carrier frequencies
all waves are determined by three conditions: phase ma
ing and energy conservation of the nonlinear interaction
the condition of resonance due to the cavity. It has b
demonstrated@35# that, for a type-II OPO, there are sever
signal-idler pairs of oscillation frequencies that can sati
these conditions. Among these solutions there is also
case of quasi, or totally, frequency degenerate signal
idler. This is also verified experimentally by the fact th
type-II OPO’s, unlike type-I OPO’s, can be smoothly tun
through frequency degeneracy@16,36#. Let us remark, fi-
nally, that for type-II OPO’s signal and idler are always p
larization nondegenerate.

The boundary condition to impose on Eq.~A3! for steady
state operation of the OPO is that the round trip transform
tion coincides with the identity, i.e.,EW n115EW n . Let us de-
fine AW (L)5 f (REW n), the vector field at the output of a cryst
of length L ~which is also the cavity length for the com
pletely filled cavity! and AW (0)5REW n5REW n11, the field at
the crystal input; by multiplying the left and right hand sid
of Eq. ~A3! by R ~on the left! and substituting previous defi
nitions the following equation is found:

AW ~0!5RMR21AW ~L !. ~A4!

Let us now setAW 8(z)5H(z)AW (z) such that

AW 8~0!5AW ~0!, AW 8~L !5AW 8~0!, ~A5!

the second condition imposing the periodicity after a rou
trip. The general form of the matrixH(z) satisfying Eq.~A5!
is

H~z!5S ehxxz ehxyz2e2hxyz

ehyxz2e2hyxz ehyyz D . ~A6!

This matrix extends the scalar transformation used by
giato and Oldano in their original paper@41#, devoted to the
study of stationary spatial patterns in optical systems w
two-level atoms, to a vectorial case. It is easy to verify t
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H(0) is the identity matrix whileH(L)5RMR21 and thus
all the elements of the matrixhi j can be explicitly calculated

hxx5
1

L
$ ln~r !2 is1 ln@~11p cos 2f!cosd

1 i ~p1cos 2f!sind#%,

hyy5
1

L
$ ln~r !2 is1 ln@~12p cos 2f!cosd

1 i ~p2cos 2f!sind#%,

hxy5hyx5
1

L
$ ln@~p cosd1 i sind!sin 2f

1A~p cosd1 i sind!2 sin22f14#2 ln~2!%.

~A7!

The evolution of the field in the crystal is governed by equ
tions of the type

]zAW 5L~AW !1N~AW ,BW !, ~A8!

whereBW 5@Bx ,By#5RFW n represents the pump vector field
The linear term is

L~AW !5S i

2kx
¹22

1

vx
] t 0

0
i

2ky
¹22

1

vy
] t

D AW ~A9!

and includes the diffraction (kx,y are the longitudinal wave
vectors of signal and idler,¹2 is the spatial transverse La
placian operator! and the phase velocity mismatch (vx,y are
the phase velocities, respectively, of signal and idler,] t is the
differential operator with respect to time!. The nonlinear op-
erator is

N~AW ,BW !5 iKBxS 0 1

1 0DAW * , ~A10!

whereK is the nonlinear coefficient. SinceAW 5H21AW 8 the
evolution of the fieldAW 8 in the crystal can be determine
from

]zAW 5~]zH
21!AW 81H21]zAW 8, ~A11!

which finally yields

]zAW 81H~]zH
21!AW 85HL~H21AW 8!1HN~H21AW 8,BW !.

~A12!

The matrixH is known and so all the terms of the last equ
tion can be explicitly calculated; in particular, by followin
the guidelines of Ref.@41#, if p andd are small parameter
~of the order of the transmittivityT512r of the mirror! one
can calculate a set of first order~in T! equations by expand
ing all coefficients up to this order. After long but straigh
1-13
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forward calculations, the final result is a set of coupled eq
tions for the vectorAW 85@Ax ,Ay#

T, that still contains both]z
and] t operators, but includes the boundary conditions. I
worth writing these equation because the coefficient of e
term appears explicitly written in terms of physical para
eters:

] tAx1vx]zAx5hxxvxAx1
vx

L
~p1 id!sin 2fAy1 i

vx

2kx
¹2Ax

1 ivxKAy* Bx,

] tAy1vy]zAy5hyyvyAy1
vy

L
~p1 id!sin 2fAx1 i

vy

2ky
¹2Ay

1 ivyKAx* Bx . ~A13!

By exploiting the single longitudinal mode approximatio
which is quite a good one for continuous wave OPO’s,
longitudinal spatial dependence can be finally removed
the equations describing the time evolution are exactly E
~1!. The coefficients of Eqs.~1! can be found from Eqs
~A13! once the expressions~A7! are substituted. They read

gx,y5
vx,y~T6p cos 2f!

L
,

Dx,y5
vx,y~s6d cos 2f!

T6p cos 2f
,

n

.

.
h
95

A

e

B

. A
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ax,y5
L

2kx,y~T6p cos 2f!
,

cx,y5
p1 id

T6p cos 2f
sin 2f, ~A14!

where the plus~minus! sign applies for thex-polarized
(y-polarized! component. Note that all coefficients can b
different because of the crystal birefringence (vxÞvy), and
the cavity birefringence and/or dichroism (pÞ0,dÞ0). Fi-
nally the nonlinear coefficient is defined as

K05
KL

T
. ~A15!

Actually it is also slightly different for the two polarization
but this difference has been neglected because it is only
to the mirror dichroism; all the other coefficients have larg
differences because two effects~crystal and cavity birefrin-
gence! contribute.

Regarding the coupling coefficients some special ca
are worth remarking in relation to what is discussed in ot
sections of this paper. For example, when cos 2f50, the
special conditioncx5cy ~complex! is obtained; in this case
f56p/4,63p/4, sin 2f561, and therefore the linea
coupling among polarization is maximized in modulus. Tw
other special cases are the purely birefringent mirrorp50,
for which cx5cy are purely imaginary, and the purely d
chroic mirror which yieldsd50 and thus purely realcx,y .
ef,
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@18# G. Izús, M. Santagiustina, M. San Miguel, and P. Colet, J. O

Soc. Am. B16, 1592~1999!.
@19# N. Kutz, T. Ernaux, S. Trillo, and M. Haelterman, J. Opt. So

Am. B 16, 1936~1999!.
@20# G.-L. Oppo, A. J. Scroggie, and W. J. Firth~unpublished!.
@21# P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lajzerow

Phys. Rev. Lett.65, 1352~1990!.
@22# E. G. Westhoff, V. Kneisel, Y. A. Logvin, T. Ackermann, an

W. Lange, J. Opt. B: Quantum Semiclass. Opt.2, 386 ~2000!.
@23# U. Peschel, D. Michaelis, C. Etrich, and F. Lederer, Phys. R

E 58, R2745~1998!.
@24# M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Lett.81, 979

~1998!.
@25# K. Staliunas and V. Sa´nchez-Morcillo, Phys. Lett. A241, 28

~1998!.
1-14



W

-
.

f

J

,

ol.

e-
,

ace

top

tt.

B.

PHASE-LOCKED SPATIAL DOMAINS AND BLOCH . . . PHYSICAL REVIEW E64 056231
@26# R. Gallego, M. San Miguel, and R. Toral, Phys. Rev. E61,
2241 ~2000!.

@27# V. Taranenko, K. Staliunas, and C. Weiss, Phys. Rev. Lett.81,
2236 ~1998!.

@28# N. N. Rozanov, Prog. Opt.35, 1 ~1996!.
@29# D. Michaelis, U. Peschel, F. Lederer, D. V. Skryabin, and

Firth, Phys. Rev. E63, 066602~2001!; G. de Valcarcel and K.
Staliunas~unpublished!.

@30# H. J. Kimble, in Quantum Fluctuations in Quantum Optics
Squeezing and Related Phenomena, edited by J. Dalibard, J
M. Raimond, and J. Zinn-Justin~Elsevier, Amsterdam, 1992!.

@31# D. Lee and N. Wong, Appl. Phys. B: Lasers Opt.66, 133
~1998!.

@32# B. E. A. Saleh and M. C. Teich,The Fundamentals o
Photonics~Wiley, New York, 1991!, Chap. 6.

@33# J. Falk, IEEE J. Quantum Electron.QE-7, 230 ~1971!.
@34# R. Eckardt, C. D. Nabors, W. J. Kozlowsky, and R. L. Byer,

Opt. Soc. Am. B8, 646 ~1991!.
@35# T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre
05623
.

.

J.

Opt. Soc. Am. B10, 1668~1993!.
@36# J.-Y. Zhang, J. Y. Huang, and Y. R. Shen, Laser Sci. Techn

19, 1 ~1995!; C. L. Tang and L. K. Cheng,ibid. 20, 1 ~1995!.
@37# Equations~1! have been integrated using the algorithm d

scribed in Ref.@42#. In 1D we take a grid of 2048 samples
with periodic boundary conditions. For all cases the grid sp
was Dx50.078125 and the integration step wasDt50.001.
For the 2D case we use a grid of 2563256 samples with grid
spaceDx5Dy50.3125 and time stepDt50.02. In some cases
we use, instead of periodic boundary conditions, a flat-
super-Gaussian pump beamE0(x,y).

@38# H. Tutu, Phys. Rev. E56, 5036~1997!.
@39# T. Frisch, S. Rica, P. Coullet, and J. M. Gilli, Phys. Rev. Le

72, 1471~1994!.
@40# C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, and V.

Taranenko, Appl. Phys. B: Lasers Opt.68, 151 ~1999!.
@41# L. A. Lugiato and C. Oldano, Phys. Rev. A37, 3896~1988!.
@42# R. Montagne, E. Herna´ndez-Garcı´a, A. Amengual, and M. San

Miguel, Phys. Rev. E56, 151 ~1997!.
1-15


