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Phase-locked spatial domains and Bloch domain walls in type-Il optical parametric oscillators
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We study the role of transverse spatial degrees of freedom in the dynamics of signal-idler phase locked states
in type-Il optical parametric oscillators. Phase locking stems from signal-idler polarization coupling which
arises if the cavity birefringence and/or dichroism is not matched to the nonlinear crystal birefringence.
Spontaneous Bloch domain wall formation is observed numerically and the dynamics and chiral properties of
the fronts are investigated. Bloch walls connect homogeneous regions of self-phase-locked solutions by means
of a polarization transformation. The parameter range for phase locking is found analytically. The polarization
properties and the dynamics of walls in one and two transverse spatial dimensions are explained. The transition
from Bloch to Ising walls is characterized, the control parameter being the linear coupling strength. The wall
dynamics governs spatiotemporal dynamical states of the system, which include transient curvature driven
domain growth, persistent dynamics dominated by spiraling defects for Bloch walls, and labyrinthine pattern
formation for Ising walls.
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[. INTRODUCTION is important because, without direct polarization coupling, a
type-1l OPO remains nondegenerate at frequency degeneracy
Optical parametric oscillator€OPQO’y are versatile non- because of polarization. In this phase-locked situation the
linear optical device$l] with a variety of possible applica- polarization of the output field is determined by the locked
tions including as useful alternatives to lasers and the genralue of the relative phase between signal and idler, which
eration of light with nonclassical propertig®,3]. For optical ~ can be tuned by changes of experimentally accessible param-
cavities with large Fresnel number, they have also become eters. This device has been proposed as a candidate to gen-
paradigm for the study of the transverse pattern formatiorerate bright quantum entangled states. Our general aim in
that arises in optical systems as a consequence of diffractiahis paper is to consider such phase-locked states in a cavity
and nonlinearity[4—6]. Experimental observations of such of large Fresnel number, and to explore how the transverse
patterns have been report¢d]. Recent interest in these spatial degrees freedom enter in the description of the phe-
transverse structures in OPQO'’s arises from the study of macomenon. We find that equivalent phase-locked solutions
roscopic manifestations of quantum phenomena in the spatigirow locally, forming spatial domains separated by domain
correlations present in these pattef8% as well as from the walls. We study the nature and dynamics of these domain
study of spatially localized structures, such as domain wallsvalls.
and cavity soliton$8—15], with possible applications in all- When considering transverse spatial degrees of freedom
optical signal processing. in a type-1l OPO without direct polarization coupling there
In a type-I OPO the signal and idler fields generated in theare two different regimes. In one of them, characterized by
down-conversion process have the same state of linear polasn effective negative detunirjd 8], a finite wave number is
ization. In a type-ll OPO the signal and idler are orthogo-selected at threshold. In the second regime, to be considered
nally polarized. The additional vectorial degree of freedomin this paper, and which occurs for the opposite sign of de-
of type-1l OPQO'’s is very interesting from the point of view of tuning, homogeneous solutions are selected at threshold.
possible nonlinear phenomena. An interesting example oflowever, there is a continuum of possible solutions with
these possibilities has recently been observed experimentallyrbitrary relative phase between signal and idler. Therefore,
and described theoretical[{16,17] when considering direct there are no possible domain walls. This is different from
intracavity polarization coupling: It is possible to reach awhat happens in type-l OPQ'’s in which, for the equivalent
situation of frequency degeneracy and phase locking beregime of detunings, homogeneous solutions with two pos-
tween the orthogonally polarized signal and idler fields. Thissible opposite phases can be selected. As a consequence,
spatial phase domains appear in the system separated by do-
main walls [8,9,11-15,19,2D Such domain walls are of
*Permanent address: Departamento decB| Facultad de Cien- Ising type, that is, fronts for which the field vanishes at the
cias Exactas y Naturales, Universidad Nacional de Mar del Platsgore of the wal[21]. Domain walls with the same symmetry
Funes 33507600 Mar del Plata, Argentina. Electronic address: properties have also been reported for a variety of other op-
izus@mdp.edu.ar. tical system$22-28. Direct polarization coupling in type-l
TURL: http://www.imedea.uib.es/PhysDept OPOQO'’s breaks the invariance under changes of relative phase,
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allowing for the formation of domain walls. These walls, rotation angle ¢) is an important experimental parameter
however, can be of either Ising or Bloch typE0,21. The through which the strength of the effects we describe below
differences between Ising and Bloch walls are that there arean be controlled. We note that the equations are obtained in
two equivalent Bloch ways to connect two spatial domainsghe mean field, paraxial, and single longitudinal mode ap-
(symmetry breakingand that Bloch walls can move sponta- proximation for all the fields involved.
neously, leading to complicated persistent dynamical states The equations that describe the time evolution couple to-
of the system. The transition from Ising to Bloch walls is gether four field envelopes that depend on the transverse co-
controlled by the strength of the polarization coupling. Blochordinatesx,y: the linear polarization components of the in-
walls have recently been predicted in other optical systemgacavity field at the pump frequencB, ,(x,y,t), and the
[29]. signal and idler fieldsA, ,(x,y,t). The signal and the idler
Direct polarization coupling between signal and idler incan be either frequency degenerate or nondegenerate, de-
type-l OPO’s has been discussed in the literaturepending on the frequency selection rules imposed by the
[16,17,30,31 by considering the insertion in the optical cav- combined effects of the parametric down-conversion, the
ity of wave plategsuch as quarter-wave or half-wave plates cavity resonances, and the phase match@®3-39, but they
In these previous studies the transverse spatial degrees afe always polarization nondegenerétge-II interaction.
freedom were not considered. The generic phenomena détereafter the frequency degeneraier quasidegenerate
scribed in this paper are expected for any form of direcicase, which is routinely obtained by tuning the phase-
polarization coupling. However, we address specifically thematching conditions/36], will be considered. Moreover,
signal-idler coupling arising from birefringence and dichro-with no loss of generality we s&, andB, to be ordinary
ism of the cavity mirrors, although our equations give a genpolarized beams andl, andB, to be extraordinary polarized
eral representation of the possible forms of polarization couf18]. Then the equations describing the OPO are
pling. A small amount of birefringence or dichroism is

always present due to weak cavity imperfections and there- By=yi[ — (1+iA})By+ia,V?B,+C;B,
fore the phenomenon considered here should be generally
present in type-Il OPQO'’s. +2iKoAA, +Eql,
The paper is organized as follows. Section Il presents our
general model equations, which are derived in detail in an (9tBy=7)’,[—(1+iA)’/)By+ia>',Vsz+ cyByl,

Appendix. In Sec. lll we calculate the OPO threshold and
describe the possible stationary phase-locked homogeneous . . .
solutions, and their polarization properties are characterized A= VX[_(l“L'AX)AXJ”“XVZAX“LCXAYJF'KOA; Bxl,
in terms of the Stokes parameters. In Sec. IV we discuss
domain walls in one transverse spatial dimengibb): Ising FAy=yy[ —(L+iA A Fi ayVZAy+ CyA+iK AL By].
and Bloch walls, their dynamics, and the Bloch-Ising transi- (1)
tion are characterized. We also describe the polarization
properties of these walls. Sections V and VI describe theThe coefficientsy, ,,vy, (effective cavity decay ratgs
dynamical states in two transverse spatial dimensi@ny, Ay, Ay, (effective cavity mode detuningsand ax,yra;(y
governed, respectively, by Bloch and Ising walls. Our main(diffraction coefficients are defined in the Appendifsee
conclusions are summarized in Sec. VII. Egs. (A14)]. Some general remarks are worth making to
show differences and common features between these coef-
ficients and those previously defined for a “perfect” cavity
(see, for example]5,18]). Due to the birefringence of the
nonlinear crystal and the dichroism of the cavity, the coeffi-
A type-ll OPO that consists of a ring optical resonator,cients of equivalent terms, in different equations, are slightly
filled with a birefringent, nonlinear quadratic medium, will different, even for frequency degenerate fields. In fact they
be considered. The device is externally pumped by a lasetll depend on the relative refractive index and mirror trans-
beam, uniform in the plane transverse to the cavity longitumittivity, which are polarization dependefgee Eqs(A14)
dinal axes and of frequenayp_ We take into account the for detaild. The cavity birefringence can also cause the ef-
effects of birefringence and dichroism, which can be dudfective detuning coefficient&, ,A, (A} ,A() to be different,
either to small imperfections of the cavity mirrors or to even at frequency degeneracy. Other parameters are the non-
weakly birefringent(e.g., wave platgsor dichroic optical linearity K, [defined by Eq.A15)] and the injected pump
devices inserted in the optical cavity. The derivation of theamplitudeE, which is taken as a real number. This gives no
governing equations is presented, for clarity, in the Appenioss of generality because it is equivalent to fixing a common
dix. For the sake of simplicity, the cavity birefringence andphase reference for all fields. For the sake of simplicity, we
dichroism are supposed to be due to only one of the resondake the pump to be linearly polarized in a direction parallel
tor mirrors. Note also that, in general, the mirror principalto the phase-matched component of the intracavity tld
axes(i.e., those along which the Jones ma{i®2] that rep-  Hence, the highly mismatched componeBy is neither
resents the polarization transformation is diagpraae ro-  pumped nor nonlinearly coupled with the other components.
tated with respect to the principal axes of the crysta., It is therefore very weakly involved in the dynamics, in spite
those along which the susceptibility matrix is diagon@his  of the linear coupling wittB,.

II. EQUATIONS FOR A TYPE-Il OPO WITH DIRECT
POLARIZATION COUPLING
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The linear coupling coefficients, , ,c) , account for the  and where the effective detunidyis defined as
dichroism and the birefringence of the cavity. They are

~ A+ y,A
pris A- Doy )
cxyy=wsm(2¢), YxT Yy
If the pump amplitude exceeds , the steady state becomes
p'+id unstable and signal and idler fields are generated. In particu-
c)’(,y=%sin(2¢), (2 lar, for negative effective detuning, pattern formation occurs,
T'*p’cog2¢) as studied in Ref.18]: for this reason hereafter only the case

where the plusminus sign applies for thex (y) polarized A>.0 vinI be. considered. In this case th'eEe i§ a.Hopf bifur-
component. Although their derivation and the exact relatiorfation in which homogeneous perturbatiaps 0 with

to the physical parameters describing the cavity can be found

in the Appendix it is useful to describe them briefly at this MOV =w=— 2 (A _A 6
stage. The mirror dichroism is represented by the ratio be- M=o vt yy( Ay ©®

tween the difference of the reflectivity and the average re- )

flectivity at a certain frequency:2for A, , (signal and idier ~ have the largest growth rate. At threshold, a family of homo-
and 2’ for B, (pump componenis The mirror birefrin- ~ 9€Neous oscillating solutions bifurcate from the trivial steady
gence causes 2 different phase changgfa A, , and 25" statg. Forc, ,=0, Egs.(1) are |nvar|<'_1nt under the transfor-
for By, Finally, T (T') is the average transmittivity of the MationA—A,exp(#), Ay—Ajexp(~i¢), and therefore the
signal(idler) (pump componenisand ¢ is the relative angle r_elatlve pha_se be_:tween the homogeneous oscillating solu-
of rotation between the crystal and cavity birefringence axedONS Ax,Ay is arbitrary. o .

(the axes of dichroism are supposed to coincide with those of The introduction of the polarization coupling, 0

the cavity birefringence for the sake of simplidityVe note breaks the invariance under changes of the relative phase.
that similar linear coupling terms between signal and idlefON€ expects that such coupling should be able to produce
were previously considerdd6,17 by considering the inser- Phase-locked homogeneous stationdrg., zero frequendy

tion of wave plates(such as quarter-wave or half-wave Solutions above threshold. The linear stability analysis of Eq.

plates in the cavity of a type-Il OPO. In these cases the(3) is rather cumbersome whem,,#0, and simple analyti-
general relatiore, = —c* is satisfied cal expressions for the threshold analysis are not found. The
y :

linear stability of the trivial solution was investigated nu-
merically and a decrease of the threshold is observed when
the polarization coupling is included. As there is no closed
expression for the eigenvalues, it is in this case more conve-
A. Threshold analysis nient to determine a threshold through the condition of exis-
tence of the relative phase-locked solutions. Numerical and
analytical results are coincident. We consider the special
casec,=c,=C,tic, [(cy,C,] e R) which through Eqs(2)

can be seen to correspond to setting eitther = /4 or ¢

IIl. THRESHOLD ANALYSIS AND HOMOGENEOUS
PHASE-LOCKED SOLUTIONS

The trivial solution of Eqs(1) corresponds to the case in
which a type-Il OPO is below the threshold of signal gen-
eration. It is given by

A=A,=0, =+37/4 (i.e., to fixing the angle to the value that maxi-
mizes the coupling strengttor to settingp=c}=0 (i.e., no
BX:EEOI dichroism). We note that setting=0 reproduces a particu-
lar case of the polarization coupling consideredi6,17).
(:)’,EE0 Let us callA,=a, exply) and Ay=a, expi) the ho-
By:m, 3 mogeneous stationary solutions; by substituting such formu-
y las into Egs.(1) one gets
where c=c'+ic'=(1+iA))/[1-ALA]—cic)+i(A, A—A
+AJ)]. The threshold for instability is determined by linear- Sin(gy— ) = al— ,
izing Egs.(1) around this solution and looking for values of 2V(citCA)(CtCAy)

the bifurcation parametet, (the pump amplitudefor which

perturbations grow. The general type of perturbation is 3 1 A+TA G el
given, as usual, by plane waves egp{—\t), wherex(q) is cos iy + i) = —2K0E0|~c|2\/f[( xTTAy)c'=(1+T)c
the growth rate of the perturbation andis its transverse e
wave vector. We first recall the main results of the analysis —2\Tcod gy — ) (cic"— i),
for cxyy:c;]yzo [18]. In that case the trivial solution is
stable forEy<E., where . ;

e A= przgr | 2KoEoVT (€ sin(yy + ) —c' cos iy + 1)

(1+iAy) = 0
o=, Vit @ +2Tc] cog gy~ )~ (1+1)],
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a;=TaZ, 7) 0.30
. . 0.15F
wherel" = (c;+c,A,)/(c,+ClAy).
From Eqgs(7) we find two conditions for the existence of g 0.00
phase-locked homogeneous stationary solutions. The first
one comes from the fact that the phase difference among the —0.15¢
solutions[see the first of Eqg7)] is real only if the modulus —0.30 ‘ . .
of the right hand side is less than 1, that is, if 090 095 100 105 1.10

_ ZS r+ i r+ i )
(By = A)"<ACHCAN (G T CAy) ® FIG. 1. Bifurcation diagram of the homogeneous solutions

] (solid curve stable, dashed curve unstalbotted line is the trivial
This boundary in the complex plare ,c, defines the limit ~ unstable solution amplitude. Parameters afg=1, c,=c,
of the locking regime. Inside the boundary stationary solu-=0.05(1+i), c,=c,=0.1, A{=A/=0, A,=0.01,A,=0.03.
tions do not exist. Physically speaking, the locking condition
means that stationary phase-locked solutions exist wheneverAy), Each of the in- and out-of-phase cases includes two
the direct polarization coupling breaking is large comparecequivalent solutions which we denote as theand — solu-
with the difference in detunings. When the conditi@ is  tjons satisfyingAX*y= —A,-
not satisfied, numerical solutions show that there are still | the generalvcase W’ithxi A, solutions are no longer
homogeneous states but their phase varies periodically Withtrictly in or out of phase. Nonetheless, well within the
time. Such solutions indicate the persistence of the Hopf biphase-locked regime where the detuning coefficients are
furcation found forc, ,=0 when the polarization coupling is  small compared with the strength of the polarization cou-
small. N _ _ pling, the solutions one finds are close to being in or out of
The second condition for the existence of solutions referphase. Therefore we will still use in this situation the names
to the pump value above which there is signal and idlefof in- and out-of-phase solutions even if this is not generally
generation. The threshold; can be determined by setting 3 rigorous description. Other situations can occur close to the
a,=0 into Egs.(7) and solving forE,. The final resultis |imit of the locking regime fixed by Eq8). For example, for
cx=cy and a purely dichroic mirror, =0 so thafl’=1 and
signal and idler have the same amplitug=a,. At the
=———=—{(1+ )%+ (A +TA)?+4Tc,|? coS (s onset of the locking regimp\,—A,|=2|c}|, and it follows
4KaI[c| from the first of Eqs(7) that the two fields are locked at a
N _ r [ phase differencey,— o=+ m/2. In any case, for each
) = 4T cot iy~ )[E(1+T)+ €A+ TA)]). locked value of theyphase difference there are two equivalent
(9 + and— solutions satisfying\} = —A,,
A bifurcation diagram for the homogeneous solutions for
The classification of the solutions found above this threshol@ generic case withh,# A, is presented in Fig. 1. The se-
is easier to understand by considering the cage A, for  lection of the solution that actually bifurcates, either in phase
which the condition(8) is automatically satisfied. In this case or out of phase, is determined by the relative value of the
and regardless of the value of , the relative phase shift thresholdE, for each solution. Equatiof®) shows that the
between phase-locked signal and idler can be eith@n-0 threshold is lower if the term proportional to cgg(- ¢,) is
phase solutionor 7 (out-of-phase solutionand the ampli- positive; for the in-phase solution this occursd§[>0,cfX
tude of the fields is equalag=a,) sincel’=1. Once the >0 and vice versa for the out-of-phase solutior}j& 0,c,
phase shiftys,— i is known it can be substituted into the <0. An example of the thresholds calculated for the in-phase
second of Eqs(7) which can be solved fog, + 4. In prin-  and out-of-phase solutions, as a functionchf ¢, and for
ciple two solutions exist for each phase differerite and  the same detuning values as in Fig. 1, is shown in Fig. 2.
out-of-phase casgsdue to the fact that the arccos is a mul- Note that there is a range of values of the couplipg in
tivalued function in the rang¢—m,m]. However, if the \hich Eq.(8) is not satisfied and there is no threshold for the
negative solutions fokjy, + ¢, are replaced in the third of emergence of the phase-locked solutions. But, in the range in
Egs.(7) the result isa; <OV E,. Therefore only positive so- which Eq. (8) holds, the lower threshold decreases as the
lutions of the angle sum should be taken to guarantee thajoupling strengthc, ,| increases, allowing parametric down-
a>0 above a certain thresholl,. By substituting the conversion for lower values of the external pump with re-
phase difference and sum into the third equation the amplispect to the reference casg, (=0). Note also that the roles
tude is finally found. There are two equivalent possible so-of the two solutions are exchanged if the sign @f, is
lutions for the in-phase case and two for the out-of-phaseeversed. Only the solutions with lower threshold are stable.
case. The existence of these two equivalent solutions is Brom numerical investigation we learn that even in the non-
consequence of the symmetrg,(,A,) — — (A, A)) of Egs.  extended (dynamical system the solutions with higher
(1) which is preserved foc, ,#0. In summary, we find in- threshold are unstable. We finally note that our numerical
phase solutionsA,=A,) and out-of-phase solutiong\({= integrations show that, when switching on the pump to a

2
c
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FIG. 2. Threshold of instabilitf for the trivial stationary so-
lution [Eq. (3)]: solid (dashedl curve is the threshold of the in-
(out-of-phase solution. Here,=c, and the other parameters are

the same as in Fig. 1.

value for which both the in-phase and out-of-phase solutions
exist, the solution that is always selected is the one wit
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These equations show that the polarization state of the opti-
cal field is determined by the locked value of the phase dif-
ference between signal and idler. FAy=A,, I'=1 and

sin(yy— 1) =0 so that §,,s,,53) = (0,=1,0), where the plus
(minus sign applies for the intout-of-)phase solution. This
means that the two possible phase-locked solutions are actu-
ally linear and orthogonal polarizations whose azimuth

angles ard=atan(s,/s;)/2= * /4. We mentioned before
that there are two equivalent solutions for each of the in- and
out-of-phase solutions. These correspond to linearly polar-
ized states along the same direction, but in opposite senses,
and they have the same Stokes parameters. The Stokes pa-
rameters are determined by the relative phase, while the two
equivalent solutions have a different global phase. For ex-
ample, in the two equivalent in-phase soluti®ys=1 and
Re(A,) =Re(Ay), but in one of the solutions R&()>0 and

in the other one ReY,)<0.

When the detunings are different, the homogeneous solu-

Hions become elliptically polarized beams ¢ 0). However,

lowest threshold. Therefore, in practice we find only the two'f the detunings are smalt(A, ,<c;) I'=1 still and is well
equivalent solutions of lowest threshold.

B. Polarization properties of the phase-locked solutions

An important question is the polarization state of the

within the locking regime sing, — ¢,)=0. In these circum-
stances the state of the beam is close to being linearly polar-
ized (s3=0) with azimuth angles close t& /4. However,

it is important to note that by changing the detuning param-
eters and the strength of the polarization coupling it is pos-

phase-locked homogeneous stationary solutions that we hayg, e 14 explore arbitrary states of polarization. These states

just described. It is useful to consider the polarization repre
sentation given by the normalized Stokes parameters, defin

as[32]

are determined from E@11) in terms of the phase difference
the locked state. For example, in the case mentioned
above of a purely dichroic mirrog, =0, we havel'=1 and

A=A, therefores;=0. In this case, and at the onset of the locking
1:mr regime, s, = 0,s3= f_fl SO that the I_ocked _solutlon is circu-
x y larly polarized. Going into the locking regime, the polariza-
tion state will evolve toward linearly polarized states but
AAT +ASA, keepingds. —
5= XY pings;=0. o .
| A2+ A2 The threshold decrease due to the polarization coupling
discussed above has now a simple physical interpretation.
—I(AAL—ALA)) Let us recall that the conditiory=c, means that the relative
S3= . (10)  angle of inclination¢) must be one of these valudst 7/4,

2 2 R
A+ (A +3/4]. In particular, through Eqg2), c (c}) is positive

- . for p>0 (6>0) and ¢=m/4,—37/4 or p<0 (6<0) and

These real parameters are sufficient to characterize any sta(gé_ - . )

of polarization of a monochromatic field by assigning to the.” . 77/4,377/4..WhenAX andA, are in phiise’ the total field

field a point in the Poincaresphere. The equator of the is linearly polarized atr/4 ((?r 3m/4) rad with respec.t to the

sphere §;=0) corresponds to linearly polarized states andf:ryStal axes. The CO”C'“S'O’? that can be drawn is th‘?‘t t_he
intracavity field is actually oriented along one of the princi-

the poles of the spheres{=s,=0s,==1) correspond to al axes of the cavity birefringence dichroism. The same
states of opposite circular polarization. By replacing the hoPd! ax Vity Diretringe JIChToISM. .
occurs for the out-of-phase solution which is a beam linearly

mogeneous solutions in Eq4.0), the state of polarization of .
. : - polarized at an angle- 7r/4 (or 37/4) rad and thus the role
our phase-locked solutions is represented by of the coefficients is exchanged. So the polarization selected

_1-T is always aligned with one of the cavity principal axes.
S1=7—=,
1+T
IV. PHASE POLARIZATION DOMAIN WALLS IN ONE
_ 2yr TRANSVERSE DIMENSION: BLOCH-ISING
S2= T oYy~ ¥, TRANSITION
2 F In the previous section we discussed the existence of two

equivalent homogeneous solutions which we named-the

1D and — solutions. These are the solutions with lowest thresh-

S3=— mSIﬂ( ’/’y_ 'r/fx)
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old, while we mentioned that other solutions of higher
threshold are seen to be unstable. When the OPO switches on
after setting the pump to a value above its threshold value,
given by Eq.(9), either the+ or — solution can be selected
since they have the same growth rate. When the transverse
spatial degrees of freedom are taken into account, this selec-
tion, or spontaneous symmetry breaking of the homogeneous
solution, can be local, with a different solution emerging in
different spatial regions. It is then expected to find domain
walls that separate the spatial domains with different but

equivalent solutions. For either the signal or idler what z

changes when going from one solution to the other is just the 04T

sign. For exampleA, takes valuesA and —A at opposite Imf(A,,) x
sides of the wall. Therefore the walls can be considered as Y N
phase walls of a complex field like the ones described for 0.2t J
type-I degenerate OPOI{41,13,13. When considering the ',"'/
signal and idler the domain wall separates two solutions with /o
polarization properties determined by the locking of the rela- \ N V. A |
tive phase of the two fields. One might then talk about po- 0.4 -02 s 010 0.2 0.4
larization walls. However, we have already mentioned that / L Re(4,,)
the + and— solutions have the same Stokes parameters, but Y
there is a change in the global phase of the polarization state. ‘ —0.21

In this sense we refer to these walls as phase polarization o, —A

walls. In any case, the polarization state might present inter- 0.4

esting features in the core of the wall.
Phase domain walls for a complex field can be of Ising or G, 3. Numerical solution of Eq€1) in one spatial dimension
Bloch type[10,21]. As a general characterization, in an Ising showing an example of an Ising wall) Solid (dashedlcurve is the
wall there is a single field profile connecting one homoge-real (imaginary part of the fieldA, as a function of the transverse
neous solution with a second equivalent one, while we talkoordinate;(b) the same wall is represented in the complex plane
of a Bloch type wall when there are two different field pro- [Re(A,),Im(A,)] as a solid line. Dashed curve is the Ising wall
files (walls) connecting the two solutions. A Bloch wall im- associated with the field,. The parameters arg,=y;=1, 7,
plies, therefore, spontaneous symmetry breaking for the do=y,=1.001, A;=A;=0, A,=0.01, A =0.03, ay=a,=0.125,
main wall. In the following we study Ising and Bloch domain a,=a,=0.25,Ko=1, E;=1.25, c,=c;=0.01(1+i), andc,=c,
walls, the transition between them, and the polarization prop=0.082.
erties in one transverse spatial dimension. The characteriza-
tion of some properties of these walls is much more clear irfotation, or negative for counterclockwise rotation. There-
one dimension. Other features associated with twofore, there exist two equivalent domain walls of opposite
dimensional phenomena are postponed to the following seehirality for A,. One of the two appears by spontaneous

tions. symmetry breaking. In the example of Fig. 4 the wall of
Numerical integratiof37] of Egs.(1) confirms that sta- negative chirality forA, is selected.
tionary uniform domains of the- or — solutions form spon- In the example of the Ising wall of Fig. 3 the parameters

taneously starting from a randomly and weakly perturbedare such that we are well within the locking regime and the
trivial steady statg3). Well within the locking regime, the domain wall connects homogeneous equivalent in-phase so-
domain walls are of the Ising type, but on changing the valdutions in which the locked phase difference is close to zero
ues ofc, , and moving toward the boundary of the locking (i, — ¢,=—0.122). The shape of the field, across the
regime we find a transition from Ising to Bloch domain walls domain wall is similar to the one oh,. The situation is
[10]. An example of an Ising walllW) is presented in Fig. different for the example of the Bloch wall in Fig. 4. The
3(a). It connects thet solution atx— —« with the + solu-  parameters correspond here to a situation close to the bound-
tion atx— . By plotting the numerically obtained solution ary of phase locking and the homogeneatusand — solu-

in the complex plangRe(A,), Im(A,)] [Fig. 3b)] itis clear  tions have a locked phase differengg— ¢, = /2. In addi-

that the IW is characterized by a zero crossing of the fieldtion, Bloch walls for this system are characterized by the fact
An example of a 1D optical Bloch wallBW) is instead that the wall profile for the fieldA, has always opposite
given in Figs. 4a) and 4b); note that the field amplitude chirality to that ofA,, as seen in the example of Figiba
(represented by the vector modulus in the complex plane The polarization characteristics of Ising and Bloch do-
never goes to zero and the wall consists of an almost purmain walls are very different. For an Ising wall the Stokes
phase rotation ofr rad. The phase can rotate in two possibleparameters are seen to remain constant across the core of the
senses along the interface, clockwise or counterclockwise iwall. This is due to the fact that the phase differengg

the complex plane. This characteristic is usually called the- i, remains fixed to its locked value while going from the
wall chirality and it is defined to be positive for clockwise — to the + solution across the wall. On the contrary, in a
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0.4 ' ' ' ' 1.0 " 5

Re(4,),Im(A,)
o
N
S,S5, S3

-10 0 10 20 30

FIG. 5. Variation of the polarization along a Bloch wall, repre-
sented by means of the Stokes paramdtHsas they result from a
numerical solutions;(x) (solid curve, s,(x) (dashed s;(x) (dot-

sholf/\llﬁl.gdré ';ﬁjorzﬁrﬁz:lfg)lustg? do(]:jggrf;;i Igu?\?s ;p?;;alrs;rarir;sg;ﬁn, ted). (a) The Bloch wall separates linearly polarized states. Param-
eters are the same as in Fig. 3, except y,=1, A,=A,=0.03,

nary) part of the fieldA, as a function of the transverse coordinate; ~,” ~, Y
yp X cy=¢,=0.01, c,=c,=0.02. (b) The same representation for the

(b) the same wall is represented in the complex planeBI H wall of Fia. 4. which ¢ linticall larized stat
[Re(A,),Im(A,)] as a solid line. Dashed curve is the Bloch wall och wall ot Fg. 2, which separates elliptically polarized states.

associated with the field, . The parameters are the same as in Fig.
3, exceptc,=c,=0.01. s3=1, indicating a state close to being right circularly polar-

] ized. In terms of the Poincasphere, the representative point
Bloch wall the locked value of the phase differeng- . moves from a point at the equator through the vicinity of the
is a function of the position while moving f_rom one side of 55ty pole to the opposite point at the equator, and back to
the wall to the other. The consequence is that the Stoke@‘? original point through the vicinity of the north pole. The

parameters have a nontrivial space dependence across ange of ellipticity across the wallp(x)=arcsins)/2,

wall determining peculiar polarization characteristics of the_. ; . Ll
core of the WaII.gAF; exampFI)eS of such polarization charactery'elds. a ”at.““"?' mtg rpretation of the chirality: for a BW of
istics we show in Fig. 5 the variation of the Stokes param_negatlve chirality, like the one shown here, the ellipticity of

eters across two examples of Bloch domain walls. In Fig.thel3 polan;aﬂon state first ciectrheas?; 0 a dma>;|$um nﬁ gta tive
5(a) we consider a Bloch wall that connects two Iinearlyva ue, gong, as we rrove o the o efr side o ;.V\:? ' ho a
polarized states. In Fig.(B), which corresponds to the wall Maximum positive value. For a BW of positive chirality the

of Fig. 4, the wall connects two elliptically polarized states &Xcursion in ellipticity goes in the opposite direction.
which are close to being circularly polarized. In Fig. 5(b) the variation of the Stokes parameters indi-

In Fig. 5@ the two asymptotic states for—+« are cates a sequence of elliptically polarized states with two
e o points in the core of the wall at which the state becomes

in-phase solutions characterized g4 (s,,53)=(0,1,0) cor- F , - . o
responding to a linearly polarized state of azimath /4.  linearly polarized ¢;=0). The change in polarization state
still occurs fors;=0 because, since,=0, still =1. The

At the core of the wall §;,S,,55)=(0,—1,0) which corre- o ot " e Poificanhere f
sponds to a state of orthogonal linear polarization. Note thattPresentative point moves now in the Foincspaere from
a point close to the north pole, to the vicinity of the south

as the phase solution rotates hyrad the Stokes parameters : - :
S1,S,,S5 return to the initial values, i.e., the polarization of POI€, crossing the equator, and back to the original point

the total field is the same on each side of the wall, as previ@/ong the other side of the sphere, again crossing the equator.
ously mentioned. Along the wall the polarization changesAn Opposite sense of motion along the sphere would corre-
the field becoming elliptically polarized, but not in an arbi- Spond to an opposite chirality of the wall.

trary manner. The transformation is forced to occur sor We note that a quantitative precise description of the
=0, i.e., the azimuth angle of the ellipse is fixed in practicevariation of the Stokes parameters can generally be given by
to 6= = /4. For x<0, and close to the core of the wall, invoking the relation, which follows from symmetry consid-
s;=—1, indicating a state close to being left circularly po- erations,A,=iAJ pointwise along the wall. The Stokes pa-
larized, while forx>0, and close to the core of the wall, rameters as functions of the spatial variation of the phase
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(o x
FIG. 6. Velocity of a BW as a function of;, (cix=0) as given 0.50
by numerical simulations of Eqgl) in the regimey,A,# y A, . ~ o250 |
The parameters are the same as in Fig. 3, except the valué,s of I 7
=cy. For the last three points in the figufeorresponding to Ising § 0.00F ! |
walls) the velocity is zero. The dotted line indicates the onset of the :c\" ' R
. . —
locking regime. T _pest |
X) are then given bysubstituteA,=iA¥ into Egs.(10)]: -0.50 .
Px(X) g x= 1Ay q
-20 -10 0 10 20
$1(x)=0, z
: 0.50
Sa(X)=siN 2¢(X) ],
025
S3(X)=—Cc0g 2y (X)]. (12 N
= 0.00
We next turn to considering the dynamics of the domain g
walls, which is also useful to determine the transition be- S -0.25
tween Ising and Bloch walls. Isolated Ising walls in 1D are
stable and remain stationary. The dynamics of 1D BW’s de- -0.50
pends critically on the values of the cavity decay rates and —10 0 10 20

the detuning. For,A,=y,A,, 1D BW’s do not move: they
are stable stationary interfaces between equivalent uniform F|G. 7. Examples of multiple hump stable solutions. Solid
domains. A similar situation takes place in the potential limit(dashedicurve is the realimaginary part of the fieldA, . In (a) the
of the 1D parametrically forced complex Ginzburg-Landaufield comes back to the initial statél) initial condition used in(a).
equation(PCGLE where stationary BW's have been found Here Ref,)=Im(A,) for x<0. (c) IW with two crossings of the
analytically[21,38. On the contrary, fory,A,# y, A, walls  zero amplitude point. Parameters arg=0.253 75, a,=0.246 25
of different chirality move in opposite directions, as also ay=a,=0.125, A;=A/=0, A,=A;=0.02, y=vy=1, %
happens outside the potential limit of the PCGLE. The ve-=0.985, y,=1.015,c;=c,=0.01, ¢,=c,=0.2+i0.02.
locity of the resulting BW depends on the value of the pa-
rameters; in particular, it depends strongly@n,. In Fig. 6  also controls the wall width. Moving well within the locking
the velocity of BW's as a function of, (real, for selected regime the width becomes small, while it divergescag
values of the other parameters, is shown as it results from-0.
numerical solutions. For smatl, BW'’s are not stable be- We finally mention that other forms of stable localized
cause we are outside the locking regipi. (8) is not sat-  structures or domain walls are sustained in this system, al-
isfied]; for larger values the velocity decreases on increasinghough they do not appear spontaneously when starting from
¢, and finally it vanishes. The vanishing of the velocity iden-a weakly perturbed trivial steady sta® and a pump value
tifies the transition point at which a BW decays into an IW. above threshold. They can be formed far above threshold,
This transition is continuous, i.e., the amplitude of the wallmediated by the unstable phase-locked solutions of higher
solutions, which is almost constant for BW's for smejl, threshold discussed in Sec. Ill. A first example, shown in
shows larger and larger variations as the transition is apFig. 7(a) is a stable 1D localized structure in the background
proached. The amplitude of the signal figland also the of a + in-phase solution. This structure is generated from a
idler) becomes small at the core of the wall and it eventuallysteplike initial condition, shown in Fig.(B), which connects
reaches zero. At this point BW’s and IW’s exchange theirthe stable+ in-phase solution with the unstabte out-of-
stability and only standing IW’s are found beyond that criti- phase solution. The dynamical evolution of this unstable
cal value. The conclusion is that in the regime of the parameonfiguration leads to the localized structure. A second ex-
eter space for which BW's are stable IW’s are unstable, anémple shown in Fig. (¢) is a kind of domain wall that con-
vice versa. nects, as in the Ising and Bloch walls discussed above, the
In addition to the transition from Bloch to Ising type, the equivalent+ and — solutions of the phase-locked solutions
strength of the direct polarization coupling coefficients,  of lowest threshold. The difference from our previous Ising
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()

(b) (c)

-
5 b

FIG. 8. A snapshot at time= 1600 of the fieldA,(x,y,t), spon-
taneously generated from random initial conditions close to the
trivial steady state(a), (b), and(c) show, respectively, the real part, . ) .
the intensity, and the phase. Black and white segments in the walls G- 9- Amplitude of the, field as a function of the transverse
(B.) in (a) correspond to opposite senses of rotation of the phasgoordlnat_esx,_y) in the V|C|n|ty,of a defect. The p_arameters are the
(chirality). The black points irib) are the defects, where signal and S&Me as in Fig. 3, except=y,=1, Cx=0.02(1+i/2), cy=0.02.
idler amplitude vanishes. The phase varies between(black and
« (white). Intermediate values are showed in a linear scale of 256n the vicinity of a defect is shown in Fig. 9. The correspond-
gray levels. The parameters are the same as in Fig. 7, e4Gept jng snapshot for the field, shows the same structure with
iiO)'OL Ay=003, ¢,=¢;=0.025(1-i/2), and cx=¢,=0.02(1  \\4)is and defects at the same positions asAfpr

: There are different effects determining the dynamics of
PW’S in 2D. A first mechanism is the one found in 1D,
related to detuning and damping coefficients. However, in
2D the dynamics is also influenced by the curvature of the
namically from a similar initial condition to the one shown in walls and the presence of field defects. In what follows two

Fig. 7(b), but with a different sign of the unstable solution of M&iN regimes are identified. In the first regime, called the
the step: The initial steplike condition connects the stable '€9ime of domain growth, curvature effects dominate. This

in-phase solution with the unstable out-of-phase solution. leads to the complete disappearance of all fronts, all defects,
and all domains except one, the final state being a homoge-

neous solution. The second regime is characterized by a per-
sistent dynamics in which defects are deeply stable objects,

In our 2D numerical solution§37] with random initial whil_e_domains and walls are continuously generated and
conditions around the trivial unstable solution we also ob-2nhihilated.
serve the spontaneous formation of BW’s which are now
lines in the transverse plane. These walls evolve dynamically ) )
as described below. An additional feature of BW’s in 2D is A. Regime of domain growth
that the domain walls can emerge with opposite chirality in  For y, A, = vyAy, flat 2D BW's are stable structures. This
different spatial regions along the wall. The points on thecorresponds to the fact that 1D walls, for the same values of
wall where the chirality changes sign are singular points: Atthe parameters, do not move. The transient dynamics is then
these points the phases of the signal and idler fields are nai ordering process mainly controlled by the curvature ef-
defined and the amplitudes go to zero, i.e., they can be clagects in which the walls evolve by reducing curvature. This
sified as topological defects. The BW, at that particularleads to the growth of one of the two equivalent solutions at
point, actually degenerates into an IW. A snapshot of typicathe expense of the other and the annihilation of all the de-
transient transverse patterns generated by the Bloch walls fects. This process is shown in Fig. 10, where snapshots at
shown in Fig. 8 for the componewt,. The two equivalent different times are shown. The images of the upper row show
+ and — phase-locked homogeneous solutions are reprethe intensity of the polarization componeht, while in the
sented in Fig. &) by regions of different intensity on a gray pictures of the lower row the real part of the same field is
scale @,). Likewise, the segments along the walls of dif- presented. Slowly all the defects and walls disappear and the
ferent chirality are represented, respectively, by black offinal state is a homogeneous phase-locked solution.
white segmentsK.) in Fig. 8@). The defects where the In this regime the normal velocity of the fronts is deter-
changes of chirality take place can be observed as black dotsined by the local curvature of the wall. This is demon-
in the intensity field[Fig. 8b)]. Note that, except for the strated by Fig. 11 where the evolution of the square radius of
defects, the field intensity is almost constant in the domains domain surrounded by a circular BW has been determined.
and only slightly modulated close to the core of the wall. TheThe result is a growth law(t) =t characteristic of curva-
phase field, shown in Fig.(8), demonstrates that phase de- ture driven domain growtf26]. Similar structures, annihila-
fects with topological charge-1 occur at the points of tion dynamics, and dynamical exponents for the growth law
change of chirality on the wall. This structure for transverseof BW domains have been reported in the description of the
Bloch domain walls is observed for a wide range of param-ordering process of a nonconserved anisotrof¥cspin sys-
eters. A typical expanded vision of the amplitude of the fieldtem in 2D[38].

4

walls consists in a more complicated structure of the core o
the wall. In this case the field, vanishes at three points in
the core of the wall. This type of domain wall emerges dy-

V. CHARACTERIZATION OF 2D BLOCH WALLS
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FIG. 10. The domain growth regimey{A,
=vyyA,) is presented by means of snapshots at
different times: (a) t=200; (b) t=600; (c) t
=1000; (d) t=2000. The upper row shows the
evolution of the intensity ofA,(X,y,t) while in
the lower row the real part of the same field is
shown. The initial condition is random and the
parameters are the same as in Fig. 3, exdgpt
=0.01002,y,=1.002, c,=c,=cy=cy=0.02(1
+i).

(c) (d)

B. Regime of persistent dynamics sion, in each direction, of BW’s of alternating chirality. The

More unusual of our system is the regime found fordefects remain stable and walls are regenerated by the spi-
A # A, . Let us recall that in this regime 1D optical ralmg process. The dynamical process that we havelj_ust de-
BW's of different chirality move in opposite directions while sc_nbed_becomes fuzzy close to the_ Ising-Bloch transition. In
IW's (characterized by a point of zero amplitidgo not this regime of parameters the amplitude of the field becomes

move. The dynamics in 2D is reminiscent of this behavior; inV€ry small at the core of the wall and the clear distinction
fact the defects are notably stable like the corresponding 13€tWeen point defects and wall segments of different chiral-
IW’s, while BW's of different chirality move in opposite 'Y 1S 10St.

directions. The combination of these two effects is that BW'’s

spiral around the defects; this phenomenon was also ob- VI. 2D ISING WALLS

$erved for .BW'S In o_ther physical S)_/sterfﬁ@]. The .splral- Beyond the transition from BW's to IW'’s the latter appear

ing dynamics of an isolated defect is shown in Fig. 12 ob-,

> ) . .~ spontaneously separating spatial domains of thand —
tained with a flat-top profile for the pump beam. The Stablllt3./solutions, but their dynamics and the asymptotic state of the

of the defects with these physical boundary conditions iy gsem still depend strongly on the strength of the direct
remarkable. This is an important result because Stab'l'zat'oBoIarization coupling. As in the case of BW's, we find for

of optical vortices has always been critical in lasers and NON\Ar's two main regimes: a regime of domain growth and one
linear optical systemjgt0]. When many of these defects arise of labyrinthine pattern formation.

spontaneously from random initial conditions around the For coupling values close to the Bloch-Ising transition, a

trivial unstable solution, the system becomes trapped N @, |ging wall is stable. The transient dynamics is then con-
complicated state of persistent dynamics in which a NOmog 164 by the curvature of the walls. Curvature reduction

geneous state iS. never re.ached. An_ undgr;tgnding p.f SUG8ads to domain growth much in the same way as we already
persistent dynamics is easier for particular initial Cond't'ons'described for BW's in the corresponding regime. In Fig
In the example shown in Fig. 13 the initial condition is a flat 14(a) typical time series of snapshots of the trans.ve4§e ’

E.’W with equally spa_ced defec_ts glong the wall. This 9VeSeld is shown. The final asymptotic state is homogeneous.
rise to segments of different chirality along the wall that start

moving in opposite directions. The net result, after collision -
of spiraling BW'’s of the same chirality, is the periodic emis- (a) ’

600

400} 1
e
200} 1 (b)

0 2000 4000 6000 8000 .
t

FIG. 11. The asterisks show the time evolution of the square
radiusR? of a circular BW domain, in the growth domain regime, FIG. 12. Time evolution of one spiral of BW’s around a defect.
as they result from the numerical solution. The solid line is a linearn the left column the amplitude d&,(x,y,t) is represented while
interpolation of numerical data. Parameters are the same as in Fig the right column the real part of the same field is shovan.t
10, excepk:;=c;=0.01(1+i) andc,=c,=0.02. =560; (b) t=1120. The parameters are the same as in Fig. 9.
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FIG. 15. Formation of a labyrinthine pattern in the regime for
which IW’s are stable but their curvature is modulationally un-
stable: the upper row shows the intensity pattern and the lower row
Re(A,) for (a) t=75; (b) t=1500. The initial condition is random
and the values of the parameters are the same as in Fig. 14, except
Ay=0.010 Ol,cX:cy:c)’(:c{,zo.a'.
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of labyrinthine patterns is very slow. The creation of a laby-
rinthine pattern stems from the fact that, in this regime of
parameters, flat Ising wallgi.e., with no curvaturg are
modulationally unstable. Roughly speaking the finger growth
is associated with a band of modulational frequencies of the
FIG. 13. Time evolution of a BW, spiraling around an array of front curvature that tend to increase their curvature. This is
defects imposed as an initial conditiof@ t=0; (b) t=1000;(c)  reminiscent of what has been reported for intracavity second
t=1150;(d) t=1550. In the left column the amplitude &(x,¥,t)  harmonic generatiof23] and vectorial Kerr resonatof26] .
is represented while in the right column the real part of the samg, gy to illustrate the modulational instability, the evolu-

field is shown. The parameters are the same as in Fig. 7 excepbn of an initially perturbed Ising flat wall is shown in

a2, PTI

|4

Lodh oAb AN 4

A,=0.01,A,=0.03, ¢,=c,=0.025, andc,=c,=0.01. Fig. 16

Similar dynamics has already been reported in a type-l VIl. CONCLUSION

DOPO above thresholB,11,20, the only difference being '

the vectorial character of the field in this case. In conclusion we have demonstrated that Bloch walls can

Far from the Bloch-Ising transition and moving deeperbe found in nonlinear optical systems, in particular in type-I|
into the locking regime transverse labyrinthine patterns ar@ptical parametric oscillators. They appear when there exists
spontaneously formed in the system starting from a randorma small birefringence and/or dichroism of the cavity along
perturbation of the ftrivial unstable solutid26,27]. Snap- axes that do not coincide with those of the nonlinear crystal.
shots of the evolution of a pattern of this type are shown foThese effects introduce a linear coupling between the signal
intensity and real part in Fig. 15. Note that the time evolutionand the idler which causes self-phase-locking of the two

NG S ON
é FIG. 14. Snapshot at different times, observed
> ) in the coarsening regimea) t=300; (b) t=900;

(c) t=1900;(d) t=3000. The upper row presents

IS P
v - the intensity pattern and the lower row Ref.
The initial condition is random and the values of
the parameters are the same as in Fig. 3, except
cx=¢,=0.09.
(a) (b) (c) (d)
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(b) (c) (d)

fields. There exist two possible steady state solutions, chamean field equations for OPQ’s is the inclusion of the effects

acterized by a phase shift af rad of both polarization com- of dichroic and birefringent mirrors. In order to simplify the

ponents, and thus different domains spontaneously form imodel, let us assume that only one out of the four mirrors of

which one or the other solution is selected. The separatinthe ring cavity is birefringent and dichroic. This means that,

walls can be of either the Bloch or the Ising type dependingn a proper system of orthogonal axes, the malixwhich

on the strength of the coupling coefficient. For small valuesrepresents the transformation of two orthogonally polarized

Bloch walls are stable and appear spontaneously above @mponents of a beam, in the Jones formali82] is

predicted threshold out of a random perturbation of the

trivial steady state. Bloch walls have been characterized in (r e 0 ) _
=re io

FIG. 16. Modulational instability of an ini-
tially flat IW: the upper row show$A,(x,y,t)|?
and the lower row the real part of the same field.
In this regime 1D Ising fronts are stable. The val-
ues of the parameters are the same as in Fig. 15.

(a)

(1+p)e® 0
both one and two dimensions. In one dimension a physicall = _is
interpretation of Bloch walls is given in terms of polarization 0 (1-pje
variations that connect two homogeneous states that repre- (A1)
sent the same state of polarization. The chirality is instead
related to the ellipticity variations. Multiple hump Ising walls Where  r=(ry+r5)/2,p=(ry—r5)/(2r),0=—(J1+ ¢)/2,

have also been found starting from particular initial condi-a@nd 6= (42— #1)/2. The dichroism, i.e., the different reflec-
tions. In two dimensions, Bloch walls can possibly have walltivity of the mirror for different polarizationsrg#r5), im-
sections of different chirality, i.e., where the phase rotates iflies thatp#0, while the birefringence is represented by the
two possible ways, clockwise or counterclockwise in thefact thaty; # ¢, i.e., the phases of the reflected components
complex plane. Where the chirality changes sign the phasendergo a different changeS¢ 0).

has defects, where the field amplitude is zero, and the wall A firstimportant remark to make is that the mirror anisot-
degenerates into an |Sing one. Two dynamica| regimeg:opy axes mlght not coincide with the axes of the nonlinear
which depend on the decay rates and the detunings, afgystal, which is also birefringent in order to realize the
found: in the first one, the wall dynamics is dominated by thePhase matching between the pump and the generated fields.
curvature and a final homogeneous state is reached; in tHg other words the anisotropic crystal has its own preferred
second regime, the walls spiral around stable defects ariplarization axes that can be rotated by an anglevith
persistent creation and annihilation of fronts is observed. Théespect to the mirror principal axéthose for which the mir-
transition from Bloch to Ising walls has also been observedor matrix is diagonal Therefore, when passing from the
when the linear coupling strength is increased; the transitioffropagation in the cavity axes reference frame to that in the
is characterized by larger and larger variations of the amplicrystal a rotation, represented by the matrix

tude of the field close to the core of the wall and the fact that

0 r,e 2

the walls stop moving. Ising wall dynamics has also been Cos¢ —sin ¢
considered, in particular, the curvature modulation instabil- = sing  cose |’ (A2)
ity, which leads to the creation of a labyrinthine pattern.
ACKNOWLEDGMENTS has to be applied. At the end of the propagation in the non-

linear medium an inverse transformatioR (%) is needed to
This work was partially supported by the Spanish MCyT restore the reference frame of the cavity axes.
Project No. BFM2000-1108 and by the European Commis- The genericn+ 1 round trip in the cavity for the signal

sion project QSTRUCT(FMRX-CT96-0077. The authors  anq idler vector fields of the previous step(E,) is then

acknowledge clarifying discussions with G.-L. Oppo. represented by the following transformaticail mirrors ex-
cept the last one are perfectly reflective, i.e., their matrices
APPENDIX are all equal to the identity matpix

In this appendix the derivation of Eg&l) is presented. R R
The main difference with respect to previous derivations of En.1=MR (RE,), (A3)
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wheref(-) is the result of the propagation inside the nonlin-H(0) is the identity matrix whileH(L)=RMR ! and thus
ear medium. A similar formula can be written also for the all the elements of the matrix; can be explicitly calculated:
pump vector fieldfn which, in principle, has both polariza- 1

tion components. Usually one component does not partici- he=—{In(r) —io+In[(1+ p cos 2p)coss

pate in the nonlinear dynami¢i is not phase matchgdnd L

it is neglecteda priori. In this case, due to polarization cou- . .

pling, it is included in the model although the final result is *i(p+cos2p)sindl},
that, under not very restrictive hypotheses, its effects can be

1
neglected. hyy=={In(r)—io+In[(1—p cos 2p)cossd
The output of the functiorf(-) is the vector field as it L
results after the integration of a set of nonlinearly coupled +i(p—cos 2¢)sin 8]}

propagation equations, i.e., it involves productsl::qf and

Ifn. Hereafter only the signal and idler vector fieﬁq equa-
tions will be considered; similar calculations can be repeated
for the pump components.

Let us remark that the optical carrier frequency of each + \/(p cOSS+i Sind)? sif2¢+4]— In(2)}.
component has already been removed., envelope equa- (A7)
tions[36] are searched fpand that the carrier frequencies of
all waves are determined by three conditions: phase matctFhe evolution of the field in the crystal is governed by equa-
ing and energy conservation of the nonlinear interaction angions of the type
the condition of resonance due to the cavity. It has been
demonstrated35] that, for a type-Il OPO, there are several 9,A=L(A)+MA,B), (A8)
signal-idler pairs of oscillation frequencies that can satisfy
these conditions. Among these solutions there is also thﬁ/here§=[Bx,By]=R|§n represents the pump vector field.
case of quasi, or totally, frequency degenerate signal angthe linear term is
idler. This is also verified experimentally by the fact that

1
hyy= hyxzt{ln[( p cosé+i sind)sin 2¢

type-lIl OPO’s, unlike type-l OPQO'’s, can be smoothly tuned i , 1 0
through frequency degenera¢$6,36. Let us remark, fi- R 2_I<XV _U_Xﬁt )
nally, that for type-Il OPO'’s signal and idler are always po- L(A)= . A (A9)
larization nondegenerate. 0 I—VZ— i(;
The boundary condition to impose on EA3) for steady 2k, Uy !

state operation of the OPO is that the round trip transforma- i ) o

. o . . = = and includes the diffractionk{ , are the longitudinal wave
tion coincides with the identity, i.eE,,,=E,. Let us de- ; . XY )

R ~ i vectors of signal and idlely< is the spatial transverse La-
fine A(L) =f(RE,), the vector field at the output of a crystal pj5cian operatgrand the phase velocity mismatch,(, are
of Iength L (whph is also the cavity length for the COM- the phase velocities, respectively, of signal and idlgis the
pletely filled cavity and A(0)=RE,=RE, 4, the field at differential operator with respect to timeThe nonlinear op-
the crystal input; by multiplying the left and right hand sideserator is

of Eg. (A3) by R (on the lef) and substituting previous defi-

nitions the following equation is found: oL 0 1)\.
/\/(A,B)=|KBX(1 O)A*, (A10)
A(0)=RMRA(L). (A4)
i i whereK is the nonlinear coefficient. Since=H A’ the
Let us now sefA’(z) =H(z)A(2) such that evolution of the fieldA’ in the crystal can be determined
from
A'(0)=A(0), A'(L)=A"(0), (A5)

9,A=(3,H HA +H 19,A", (A11)
the second condition imposing the periodicity after a round = )
trip. The general form of the matrid(z) satisfying Eq(A5) ~ Which finally yields

is R R R .
A +H(IH HA'=HLH A" ) +HNMH A" B).
ehxxz ehxyz— e hyyz (A12)
H(z)= A6 o
(2) ey — =Ny ehyy? (A6) The matrixH is known and so all the terms of the last equa-

tion can be explicitly calculated; in particular, by following
This matrix extends the scalar transformation used by Luthe guidelines of Refl41], if p and 6 are small parameters
giato and Oldano in their original papetl], devoted to the (of the order of the transmittivitf =1 —r of the mirron one
study of stationary spatial patterns in optical systems withcan calculate a set of first ordén T) equations by expand-
two-level atoms, to a vectorial case. It is easy to verify thating all coefficients up to this order. After long but straight-
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forward calculations, the final result is a set of coupled equa- L
tions for the vectoA’ =[ A, ,A]", that still contains botl#, Axy= 2Ky (TEpCos 2p)’
and ¢, operators, but includes the boundary conditions. It is '
worth writing these equation because the coefficient of each p+iéd )
licitl ; ; hvsical . Cyy==————=7Sin2¢, (A14)
term appears explicitly written in terms of physical param XY~ T=pcos 2
eters:

where the plus(minus sign applies for thex-polarized

Ux Ux (y-polarized component. Note that all coefficients can be

TP VTP Mo A L (pHid)sin 264, 'ZKXV Ax different because of the crystal birefringeneg #v,), and
i . the cavity birefringence and/or dichroisnp+#0,6#0). Fi-
+iugKAy By, nally the nonlinear coefficient is defined as
Uy . . Uy, KL
Ayt vy A =hy v A+ T(p+ i 6)sin 2pA, +i 2—kyv Ay KO:T' (A15)
+ivyKASBy. (A13)  Actually it is also slightly different for the two polarization,

but this difference has been neglected because it is only due
By exploiting the single longitudinal mode approximation, to the mirror dichroism:; all the other coefficients have larger
which is quite a good one for continuous wave OPO's, thedifferences because two effedisrystal and cavity birefrin-
longitudinal spatial dependence can be finally removed angence contribute.
the equations describing the time evolution are exactly EQs. Regarding the coupling coefficients some special cases
(1). The coefficients of Egs(l) can be found from Egs. are worth remarking in relation to what is discussed in other
(A13) once the expressior#\7) are substituted. They read sections of this paper. For example, when cgs<D, the
special conditiorc,=c, (complex is obtained; in this case
_ Vxy(TEp cos 29) d=*ml4, =374, siny2¢= +1, and therefore the linear

Yx,y L ) . R ) L .
coupling among polarization is maximized in modulus. Two
other special cases are the purely birefringent mipet0,
A _ Uxy(o=500S 2p) for which c,=c, are purely imaginary, and the purely di-
%y T+pcos2p chroic mirror which yieldss=0 and thus purely real, , .
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