121 research outputs found

    On the Teleportation of Continuous Variable

    Get PDF
    The measurement procedures used in quantum teleportation are analyzed from the viewpoint of the general theory of quantum-mechanical measurements. It is shown that to find the teleported state one should only know the identity resolution (positive operator-valued measure) generated by the corresponding instrument (quantum operation describing the system state change caused by the measurement) rather than the instrument itself. A quantum teleportation protocol based on a measurement associated with a non-orthogonal identity resolution is proposed for a system with non-degenerate continuous spectrum.Comment: 13 pages, no figures. To be published in JET

    Relativistic quantum coin tossing

    Get PDF
    A relativistic quantum information exchange protocol is proposed allowing two distant users to realize ``coin tossing'' procedure. The protocol is based on the point that in relativistic quantum theory reliable distinguishing between the two orthogonal states generally requires a finite time depending on the structure of these states.Comment: 6 pages, no figure

    Role of causality in ensuring unconditional security of relativistic quantum cryptography

    Get PDF
    The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not employ collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of ``antedate'' coding).Comment: 9 page

    Quantum Cryptography Based on the Time--Energy Uncertainty Relation

    Get PDF
    A new cryptosystem based on the fundamental time--energy uncertainty relation is proposed. Such a cryptosystem can be implemented with both correlated photon pairs and single photon states.Comment: 5 pages, LaTex, no figure

    Relativistic Restrictions on the Distinguishability of Orthogonal Quantum States

    Full text link
    We analyze the restrictions on the distinguishability of quantum states imposed by special relativity. An explicit expression relating the error probability for distinguishing between two orthogonal single-photon states with the time TT elapsed from the start of the measurement procedure until the measurement result is obtained by the observer.Comment: 9 pages, 1 figure (misprints in formulas corrected

    A multi-colour study of the dark GRB 000210 host galaxy and its environment

    Get PDF
    We present UBVRIZJsHKs broad band photometry of the host galaxy of the dark gamma-ray burst (GRB) of February 10, 2000. These observations represent the most exhaustive photometry given to date of any GRB host galaxy. A grid of spectral templates have been fitted to the Spectral Energy Distribution (SED) of the host. The derived photometric redshift is z=0.842^+0.054_-0.042, which is in excellent agreement with the spectroscopic redshift (z=0.8463+/-0.0002) proposed by Piro et al. (2002) based on a single emission line. Furthermore, we have determined the photometric redshift of all the galaxies in an area of 6'x6' around the host galaxy, in order to check for their overdensity in the environment of the host. We find that the GRB 000210 host galaxy is a subluminous galaxy (L ~ 0.5+/-0.2 L*), with no companions above our detection threshold of 0.18+/-0.06 L*. Based on the restframe ultraviolet flux a star formation rate of 2.1+/-0.2 Solar Masses per year is estimated. The best fit to the SED is obtained for a starburst template with an age of 0.181^+0.037_-0.026 Gyr and a very low extinction (Av~0). We discuss the implications of the inferred low value of Av and the age of the dominant stellar population for the non detection of the GRB 000210 optical afterglow.Comment: 10 pages with 4 encapsulated PostScript figures included. Accepted for publication in Astronomy & Astrophysic

    Маркетинг навколишнього середовища

    Get PDF
    The photophysical properties of silicon semiconductor nanocrystals (SiNCs) are extremely sensitive to the presence of surface chemical defects, many of which are easily produced by oxidation under ambient conditions. The diversity of chemical structures of such defects and the lack of tools capable of probing individual defects continue to impede understanding of the roles of these defects in SiNC photophysics. We use scanning tunneling spectroscopy to study the impact of surface defects on the electronic structures of hydrogen-passivated SiNCs supported on the Au(111) surface. Spatial maps of the local electronic density of states (LDOS) produced by our measurements allowed us to identify locally enhanced defect-induced states as well as quantum-confined states delocalized throughout the SiNC volume. We use theoretical calculations to show that the LDOS spectra associated with the observed defects are attributable to Si-O-Si bridged oxygen or Si-OH surface defects
    corecore