303 research outputs found

    Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images

    Get PDF
    OBJECTIVE: Apply psychometric theory to develop and validate a visual grading scale for assessing visual perception of AP pelvis digital image quality. METHODS: Psychometric theory was used to guide scale development. Seven phantom and 7 cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images; 184 volunteers scored cadaver images. Factor analysis and Cronbach’s alpha were used to assess scale validity and reliability. RESULTS: A 24 item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good inter-item correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α= 0.8 and 0.9, respectively). Factor analysis suggested the scale is multidimensional (assessing multiple quality themes). CONCLUSION: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. ADVANCES IN KNOWLEDGE: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality

    A method to design job rotation schedules to prevent work-related musculoskeletal disorders in repetitive work

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in International Journal of Production Research in 2012, available online: http://www.tandfonline.com/10.1080/00207543.2011.653452.Job rotation is an organisational strategy widely used in human-based production lines with the aim of preventing work-related musculoskeletal disorders (WMSDs). These work environments are characterised by the presence of a high repetition of movements, which is a major risk factor associated with WMSDs. This article presents a genetic algorithm to obtain rotation schedules aimed at preventing WMSDs in such environments. To do this, it combines the effectiveness of genetic algorithms optimisation with the ability to evaluate the presence of risk by repeated movements by following the OCRA ergonomic assessment method. The proposed algorithm can design solutions in which workers will switch jobs with high repeatability of movements with other less demanding jobs that support their recovery. In addition, these solutions are able to diversify the tasks performed by workers during the day, consider their disabilities and comply with restrictions arising from the work organisation.The authors wish to thank the Universitat Politecnica de Valencia which supported this research through its Program for the Support of Research and Development 2009 and its financing through the project PAID-06-09/2902.Asensio Cuesta, S.; Diego-Mas, JA.; Cremades Oliver, L.; González-Cruz, M. (2012). A method to design job rotation schedules to prevent work-related musculoskeletal disorders in repetitive work. International Journal of Production Research. 50(24):7467-7478. https://doi.org/10.1080/00207543.2011.653452S74677478502

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Mapping Brain Response to Pain in Fibromyalgia Patients Using Temporal Analysis of fMRI

    Get PDF
    Background: Nociceptive stimuli may evoke brain responses longer than the stimulus duration often partially detected by conventional neuroimaging. Fibromyalgia patients typically complain of severe pain from gentle stimuli. We aimed to characterize brain response to painful pressure in fibromyalgia patients by generating activation maps adjusted for the duration of brain responses. Methodology/Principal Findings: Twenty-seven women (mean age: 47.8 years) were assessed with fMRI. The sample included nine fibromyalgia patients and nine healthy subjects who received 4 kg/cm2 of pressure on the thumb. Nine additional control subjects received 6.8 kg/cm2 to match the patients for the severity of perceived pain. Independent Component Analysis characterized the temporal dynamics of the actual brain response to pressure. Statistical parametric maps were estimated using the obtained time courses. Brain response to pressure (18 seconds) consistently exceeded the stimulus application (9 seconds) in somatosensory regions in all groups. fMRI maps following such temporal dynamics showed a complete pain network response (sensory-motor cortices, operculo-insula, cingulate cortex, and basal ganglia) to 4 kg/cm2 of pressure in fibromyalgia patients. In healthy subjects, response to this low intensity pressure involved mainly somatosensory cortices. When matched for perceived pain (6.8 kg/cm2), control subjects showed also comprehensive activation of pain-related regions, but fibromyalgia patients showed significantly larger activation in the anterior insula-basal ganglia complex and the cingulate cortex. Conclusions/Significance: The results suggest that data-driven fMRI assessments may complement conventional neuroimaging for characterizing pain responses and that enhancement of brain activation in fibromyalgia patients may be particularly relevant in emotion-related regions

    Socio-demographic factors associated with smoking and smoking cessation among 426,344 pregnant women in New South Wales, Australia

    Get PDF
    BACKGROUND: This study explores the socio-demographic characteristics of pregnant women who continue to smoke during the pregnancy, and identifies the characteristics of the smokers who were likely to quit smoking during the pregnancy period. METHODS: This was secondary analysis of the New South Wales (NSW) Midwives Data Collection (MDC) 1999–2003, a surveillance system covering all births in NSW public and private hospitals, as well as home births. Bivariate and multiple logistic regression analyses were performed to explore the associations between socio-demographic characteristics and smoking behaviour during pregnancy. RESULTS: Data from 426,344 pregnant women in NSW showed that 17.0% continued to smoke during pregnancy. The smoking rate was higher among teenage mothers, those with an Aboriginal (indigenous) background, and lower among more affluent and overseas-born mothers. This study also found that unbooked confinements, and lack of antenatal care in the first trimester were strongly associated with increased risk of smoking during pregnancy. About 4.0% of the smoking women reported they may quit smoking during their pregnancy. Findings showed that mothers born overseas, of higher socio-economic status, first time mothers and those who attended antenatal care early showed an increased likelihood of smoking cessation during pregnancy. Those who were heavy smokers were less likely to quit during pregnancy. CONCLUSION: Although the prevalence of smoking during pregnancy has been declining, it remains a significant public health concern. Smoking cessation programs should target the population subgroups of women at highest risk of smoking and who are least likely to quit. Effective antismoking interventions could reduce the obstetric and perinatal complications of smoking in pregnancy

    Variance and Autocorrelation of the Spontaneous Slow Brain Activity

    Get PDF
    Slow (<0.1 Hz) oscillatory activity in the human brain, as measured by functional magnetic imaging, has been used to identify neural networks and their dysfunction in specific brain diseases. Its intrinsic properties may also be useful to investigate brain functions. We investigated the two functional maps: variance and first order autocorrelation coefficient (r1). These two maps had distinct spatial distributions and the values were significantly different among the subdivisions of the precuneus and posterior cingulate cortex that were identified in functional connectivity (FC) studies. The results reinforce the functional segregation of these subdivisions and indicate that the intrinsic properties of the slow brain activity have physiological relevance. Further, we propose a sample size (degree of freedom) correction when assessing the statistical significance of FC strength with r1 values, which enables a better understanding of the network changes related to various brain diseases

    Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System

    Get PDF
    A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear that plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system. The kernel structure unbiasedly reveals four interlocked negative feedback loops contributing to circadian rhythms, and three feedback loops among them drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions between genes. We found that this tendency underlies plant circadian molecular profiles which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate profiles, inhibitory interactions may facilitate the global coordination of temporally-distant clock events that are markedly peaked at very specific times of day. Our systematic approach resulting in experimentally-testable predictions provides insights into a design principle of biological clockwork, with implications for synthetic biology.Comment: Supplementary material is available at the journal websit

    Mitochondrionopathy Phenotype in Doxorubicin-Treated Wistar Rats Depends on Treatment Protocol and Is Cardiac-Specific

    Get PDF
    Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations

    Genotyping and antibiotic resistance of thermophilic Campylobacter isolated from chicken and pig meat in Vietnam

    Get PDF
    Background Campylobacter species are recognized as the most common cause of foodborne bacterial gastroenteritis in humans. In this study nine Campylobacter strains isolated from chicken meat and pork in Hanoi, Vietnam, were characterized using molecular methods and tested for antibiotic resistance. Results The nine isolates (eight C. jejuni and one C. coli) were identified by multiplex PCR, and tested for the presence or absence of 29 gene loci associated with virulence, lipooligosaccharide (LOS) biosynthesis and further functions. flaA typing, multilocus sequence typing and microarray assay investigation showed a high degree of genetic diversity among these isolates. In all isolates motility genes (flaA, flaB, flhA, fliM), colonization associated genes (cadF, docB), toxin production genes (cdtA, cdtB, secD, secF), and the LOS biosynthesis gene pglB were detected. Eight gene loci (fliY, virB11, Cje1278, Cj1434c, Cj1138, Cj1438c, Cj1440c, Cj1136) could not be detected by PCR. A differing presence of the gene loci ciaB (22.2 %), Cje1280 (77.8 %), docC (66.7 %), and cgtB (55.6 %) was found. iamA, cdtC, and the type 6 secretion system were present in all C. jejuni isolates but not in C. coli. flaA typing resulted in five different genotypes within C. jejuni, MLST classified the isolates into seven sequence types (ST-5155, ST-6736, ST-2837, ST-4395, ST-5799, ST-4099 and ST-860). The microarray assay analysis showed a high genetic diversity within Vietnamese Campylobacter isolates which resulted in eight different types for C. jejuni. Antibiotic susceptibility profiles showed that all isolates were sensitive to gentamicin and most isolates (88.8 %) were sensitive to chloramphenicol, erythromycin and streptomycin. Resistance rates to nalidixic acid, tetracycline and ciprofloxacin were 88.9, 77.8 and 66.7 %, respectively. Conclusions To the best of our knowledge, this study is the first report that shows high genetic diversity and remarkable antibiotic resistance of Campylobacter strains isolated from meat in Vietnam which can be considered of high public health significance. These preliminary data show that large scale screenings are justified to assess the relevance of Campylobacter infections on human health in Vietnam
    corecore