117 research outputs found

    Mechanical characterization of different epoxy resins enhanced with carbon nanofibers

    Get PDF
    Epoxy with carbon nanofibers (CNFs) are effective nano enhanced materials that can be prepared by easy and low-cost method. The present paper compares the improvements, in terms of flexural and viscoelastic properties, of two epoxy resins reinforced with different weight percentages (wt.%) of CNFs. These epoxy resins have different viscosities, and weight contents between 0% and 1% of CNFs were used to achieve the maximum mechanical properties. Subsequently, for the best configurations obtained, the sensitivity to the strain rate and the viscoelastic behaviour (stress relaxation and creep) were analysed based on international standards. It was possible to conclude that, for both resins, carbon CNFs promote significant improvements in all the studied mechanical properties, even for different contents by weight.   &nbsp

    A Detailed Identification of Classificatory Variables in Ship Accidents: A Spanish Case Study

    Get PDF
    [Abstract] The present paper shows an original study of more than 163 ship accidents in Spain showing which of the usually employed variables are related to each type of vessel accident due to the lack of information in this region. To this end, research was carried out based on the Spanish Commission for Investigation of Maritime Accidents and Incidents (CIAIM) reports. Detailed combinatory ANOVA analysis and Bayesian networks results showed a good agreement with studies of other regions but with some particularities per each type of accident analyzed. In particular, ship length was defined as the more relevant variable at the time to differentiate types of accidents. At the same time, both the year of build and the fact that the ship meets the minimum crew members required were excellent variables to model ship accidents. Despite this, the particularities of the Spanish Search and Rescue (SAR) region were defined at the time to identify accidents. In this sense, although variables like visibility and sea conditions were employed in different previous studies as variables related to accidents occurrences, they were the worst variables to define accidents for this region. Finally, different models to relate variables were obtained being the base of deterministic dynamic analysis. Furthermore, to improve the accuracy of the developed work some indications were obtained; revision of CIAIM accidents scales, identification of redundant variables, and the need for an agreement at the time to define the classification limits of each identification variable.This research was funded by the Sustainability Specialization Campus of the University of A Coruña grant number 6310G49279- 541A- 64900

    On the relevance of the polar β-phase of poly(vinylidene fluoride) for high performance lithium-Ion battery separators

    Get PDF
    Separator membranes based on poly(vinylidene fluoride), PVDF, poly(vinylidene fluoride-co-trifluoroethylene), PVDF-TrFE, poly(vinylidene fluoride-co-hexafluropropylene), PVDF-HFP and poly(vinylidene fluoride-co-chlorotrifluoroethylene), PVDF-CTFE were prepared by solvent casting method using N,N-dimethylformamide (DMF) as solvent. In all cases, the same polymer/solvent ratio and solvent evaporation temperature were used. For all membranes, porous microstructure is achieved with a degree of porosity larger than 50%. The β-phase content as well as degree of crystallinity were different for each membrane, which were lower for the co-polymer membranes when compared with PVDF. On the other hand, the observed ionic conductivity values, electrolyte uptake, tortuosity and MacMullin number were similar for all membranes. The electrochemical performance of the separator membranes was evaluated in Li/C–LiFePO4 half-cell configuration showing good cyclability and rate capability for all membranes. Among the all separator membranes, PVDF-TrFE demonstrate the best electrochemical performance, with a discharge capacity value of 87 mAh.g-1 after 50 cycles with a capacity retention of 78 % at 2C.Finally, the correlation between the β-phase content in the membranes and the cycling performance was demonstrated (which was significant at high-C rates): larger β-phase contents, leading higher polarity, facilitates faster lithium ion migration within the separator for similar microstructures.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013. The authors thank FEDER funds through the COMPETE 2020 Programme and National Funds through FCT under the projects PTDC/CTM-ENE/5387/2014 and UID/CTM/50025/2013 and grants SFRH/BD/90215/2012 (J.C.D.) and SFRH/BPD/112547/2015 (C.M.C.). The authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) (including the FEDER financial support) and from the Basque Government Industry Department under the ELKARTEK Program. Authors are grateful to the Government of the Basque Country for financial support (Grupos de Investigación, IT718-13). The authors thank Solvay, Timcal and Phostech for kindly supplying the high quality materials.info:eu-repo/semantics/publishedVersio

    Mycobacterium tuberculosis Infection Up-Regulates Sialyl Lewis X Expression in the Lung Epithelium

    Get PDF
    Glycans display increasingly recognized roles in pathological contexts, however, their impact in the host-pathogen interplay in many infectious diseases remains largely unknown. This is the case for tuberculosis (TB), one of the ten most fatal diseases worldwide, caused by infection of the bacteria Mycobacterium tuberculosis. We have recently reported that perturbing the core-2 O -glycans biosynthetic pathway increases the host susceptibility to M. tuberculosis infection, by disrupting the neutrophil homeostasis and enhancing lung pathology. In the present study, we show an increased expression of the sialylated glycan structure Sialyl-Lewis X (SLeX) in the lung epithelium upon M. tuberculosis infection. This increase in SLeX glycan epitope is accompanied by an altered lung tissue transcriptomic signature, with up-regulation of genes codifying enzymes that are involved in the SLeX core-2 O -glycans biosynthetic pathway. This study provides novel insights into previously unappreciated molecular mechanisms involving glycosylation, which modulate the host response to M. tuberculosis infection, possibly contributing to shape TB disease outcome

    Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications

    Get PDF
    High mobility group box B (HMGB) proteins are pivotal in the development of cancer. Although the proteomics of prostate cancer (PCa) cells has been reported, the involvement of HMGB proteins and their interactome in PCa is an unexplored field of considerable interest. We describe herein the results of the first HMGB1/HMGB2 interactome approach to PCa. Libraries constructed from the PCa cell line, PC-3, and from patients' PCa primary tumor have been screened by the yeast 2-hybrid approach (Y2H) using HMGB1 and HMGB2 baits. Functional significance of this PCa HMGB interactome has been validated through expression and prognosis data available on public databases. Copy number alterations (CNA) affecting these newly described HMGB interactome components are more frequent in the most aggressive forms of PCa: those of neuroendocrine origin or castration-resistant PCa. Concordantly, adenocarcinoma PCa samples showing CNA in these genes are also associated with the worse prognosis. These findings open the way to their potential use as discriminatory biomarkers between high and low risk patients. Gene expression of a selected set of these interactome components has been analyzed by qPCR after HMGB1 and HMGB2 silencing. The data show that HMGB1 and HMGB2 control the expression of several of their interactome partners, which might contribute to the orchestrated action of these proteins in PCa

    Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers

    Get PDF
    Polyimide co-polymers have been prepared based on different diamines as co-monomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed and the dielectric complex function, ac conductivity and electric modulus of the co-polymers were investigated as a function of CN group content in the frequency range from 0.1 Hz to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150ºC, the dielectric constant increases with increasing temperature due to increaseing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN groups content present in the samples.This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PESTC/FIS/UI607/2011 and grants SFRH/BD/ 62507/2009 (A.C.L.) SFRH/BD/68499/2010 (C.M.C.). The authors also thank funding from “Matepro – Optimizing Materials and Processes”, ref. NORTE-07-0124-FEDER-000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). RSS acknowledge the support of the Spanish Ministry of Economy and Competitiveness through the project MAT2012-38359-C03-01 (including the FEDER financial support). Authors also thank the Basque Country Government for financial support (ACTIMAT project, ETORTEK Program, IE13-380, and Ayudas para Grupos de Investigación del Sistema Universitario Vasco Program, IT718-13)

    Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells.

    Get PDF
    Follicular helper T (TFH) cells are expanded in systemic lupus erythematosus, where they are required to produce high affinity autoantibodies. Eliminating TFH cells would, however compromise the production of protective antibodies against viral and bacterial pathogens. Here we show that inhibiting glucose metabolism results in a drastic reduction of the frequency and number of TFH cells in lupus-prone mice. However, this inhibition has little effect on the production of T-cell-dependent antibodies following immunization with an exogenous antigen or on the frequency of virus-specific TFH cells induced by infection with influenza. In contrast, glutaminolysis inhibition reduces both immunization-induced and autoimmune TFH cells and humoral responses. Solute transporter gene signature suggests different glucose and amino acid fluxes between autoimmune TFH cells and exogenous antigen-specific TFH cells. Thus, blocking glucose metabolism may provide an effective therapeutic approach to treat systemic autoimmunity by eliminating autoreactive TFH cells while preserving protective immunity against pathogens
    corecore