98 research outputs found

    Editorial:Algebraic Methods in Language Processing

    Get PDF
    The papers in this volume are revised and extended versions of communications presented at the Third International AMAST Workshop on Algebraic Methods in Language Processing (AMiLP-3), held at the University of Verona, Verona, Italy, 25–27 August 2003

    Experimental time-resolved photoemission and ab initio study of lifetimes of excited electrons in Mo and Rh

    Full text link
    We have studied the relaxation dynamics of optically excited electrons in molybdenum and rhodium by means of time resolved two-photon photoemission spectroscopy (TR-2PPE) and ab initio electron self-energy calculations performed within the GW and GW+T approximations. Both theoretical approaches reproduce qualitatively the experimentally observed trends and differences in the lifetimes of excited electrons in molybdenum and rhodium. For excitation energies exceeding the Fermi energy by more than 1 eV, the GW+T theory yields lifetimes in quantitative agreement with the experimental results. As one of the relevant mechanisms causing different excited state lifetime in Mo and Rh we identify the occupation of the 4d bands. An increasing occupation of the 4d bands results in an efficient decrease of the lifetime even for rather small excitation energies of a few 100 meV.Comment: 8 pages, 10 figure

    BMW – Mastering the Crises with “New Efficiency?”

    Get PDF
    Purpose Make a contribution on company business models and typical reactions to economic crises. Design/methodology/approach Media-analysis-based case study. Findings Crisis is handled through drawing on a strategy deriving from the typical features of the company; through the crisis these features are even intensified. Research limitations/implications Multinational companies are complex and only transparent to a small degree; the empirical data therefore rests on a database with articles. Social implications Social implications can be seen at the BMW as a functioning example for social partnership as a form of economic embeddedness at the societal level

    Quasiparticle dynamics in ferromagnetic compounds of the Co-Fe and Ni-Fe systems

    Get PDF
    We report a theoretical study of the quasiparticle lifetime and the quasiparticle mean free path caused by inelastic electron-electron scattering in ferromagnetic compounds of the Co-Fe and Ni-Fe systems. The study is based on spin-polarized calculations, which are performed within the GWGW approximation for equiatomic and Co- and Ni-rich compounds, as well as for their constituents. We mainly focus on the spin asymmetry of the quasiparticle properties, which leads to the spin-filtering effect experimentally observed in spin-dependent transport of hot electrons and holes in the systems under study. By comparing with available experimental data on the attenuation length, we estimate the contribution of the inelastic mean free path to the latter.Comment: 10 pages, 10 figure

    An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action

    Get PDF
    Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin

    The benzene metabolite para-benzoquinone is genotoxic in human, phorbol-12-acetate-13-myristate induced, peripheral blood mononuclear cells at low concentrations

    Get PDF
    Benzene is one of the most prominent occupational and environmental pollutants. The substance is a proven human carcinogen that induces hematologic malignancies in humans, probably at even low doses. Yet knowledge of the mechanisms leading to benzene-induced carcinogenesis is still incomplete. Benzene itself is not genotoxic. The generation of carcinogenic metabolites involves the production of oxidized intermediates such as catechol, hydroquinone and para-benzoquinone (p-BQ) in the liver. Further activation to the ultimate carcinogenic intermediates is most probably catalyzed by myeloperoxidase (MPO). Yet the products of the MPO pathway have not been identified. If an oxidized benzene metabolite such as p-BQ was actually the precursor for the ultimate carcinogenic benzene metabolite and further activation proceeds via MPO mediated reactions, it should be possible to activate p-BQ to a genotoxic compound in vitro. We tested this hypothesis with phorbol-12-acetate-13-myristate (PMA) activated peripheral blood cells exposed to p-BQ, using the cytokinesis-block micronucleus test. Addition of 20–28 ng/ml PMA caused a significant increase of micronuclei at low and non-cytotoxic p-BQ concentrations between 0.04 and 0.2 μg/ml (0.37–1.85 μM). Thus with PMA or p-BQ alone no reproducible elevation of micronuclei was seen up to toxic concentrations. PMA and p-BQ induce micronuclei when administered jointly. Our results add further support to the hypothesis that MPO is a key enzyme in the activation of benzene

    A Zebrafish Model of Roberts Syndrome Reveals That Esco2 Depletion Interferes with Development by Disrupting the Cell Cycle

    Get PDF
    The human developmental diseases Cornelia de Lange Syndrome (CdLS) and Roberts Syndrome (RBS) are both caused by mutations in proteins responsible for sister chromatid cohesion. Cohesion is mediated by a multi-subunit complex called cohesin, which is loaded onto chromosomes by NIPBL. Once on chromosomes, cohesin binding is stabilized in S phase upon acetylation by ESCO2. CdLS is caused by heterozygous mutations in NIPBL or cohesin subunits SMC1A and SMC3, and RBS is caused by homozygous mutations in ESCO2. The genetic cause of both CdLS and RBS reside within the chromosome cohesion apparatus, and therefore they are collectively known as “cohesinopathies”. However, the two syndromes have distinct phenotypes, with differences not explained by their shared ontology. In this study, we have used the zebrafish model to distinguish between developmental pathways downstream of cohesin itself, or its acetylase ESCO2. Esco2 depleted zebrafish embryos exhibit features that resemble RBS, including mitotic defects, craniofacial abnormalities and limb truncations. A microarray analysis of Esco2-depleted embryos revealed that different subsets of genes are regulated downstream of Esco2 when compared with cohesin subunit Rad21. Genes downstream of Rad21 showed significant enrichment for transcriptional regulators, while Esco2-regulated genes were more likely to be involved the cell cycle or apoptosis. RNA in situ hybridization showed that runx1, which is spatiotemporally regulated by cohesin, is expressed normally in Esco2-depleted embryos. Furthermore, myca, which is downregulated in rad21 mutants, is upregulated in Esco2-depleted embryos. High levels of cell death contributed to the morphology of Esco2-depleted embryos without affecting specific developmental pathways. We propose that cell proliferation defects and apoptosis could be the primary cause of the features of RBS. Our results show that mutations in different elements of the cohesion apparatus have distinct developmental outcomes, and provide insight into why CdLS and RBS are distinct diseases
    corecore