62 research outputs found
Beta-Alanine Suppresses Malignant Breast Epithelial Cell Aggressiveness Through Alterations In Metabolism and Cellular Acidity In Vitro
Background: Deregulated energetics is a property of most cancer cells. This phenomenon, known as the Warburg Effect or aerobic glycolysis, is characterized by increased glucose uptake, lactate export and extracellular acidification, even in the presence of oxygen. beta-alanine is a non-essential amino acid that has previously been shown to be metabolized into carnosine, which functions as an intracellular buffer. Because of this buffering capacity, we investigated the effects of beta-alanine on the metabolic cancerous phenotype.
Methods: Non-malignant MCF-10a and malignant MCF-7 breast epithelial cells were treated with beta-alanine at 100 mM for 24 hours. Aerobic glycolysis was quantified by measuring extracellular acidification rate (ECAR) and oxidative metabolism was quantified by measuring oxygen consumption rate (OCR). mRNA of metabolism-related genes was quantified by qRT-PCR with corresponding protein expression quantified by immunoblotting, or by flow cytometry which was verified by confocal microscopy. Mitochondrial content was quantified using a mitochondria-specific dye and measured by flow cytometry.
Results: Cells treated with beta-alanine displayed significantly suppressed basal and peak ECAR (aerobic glycolysis), with simultaneous increase in glucose transporter 1 (GLUT1). Additionally, cells treated with beta-alanine exhibited significantly reduced basal and peak OCR (oxidative metabolism), which was accompanied by reduction in mitochondrial content with subsequent suppression of genes which promote mitochondrial biosynthesis. Suppression of glycolytic and oxidative metabolism by beta-alanine resulted in the reduction of total metabolic rate, although cell viability was not affected. Because beta-alanine treatment reduces extracellular acidity, a constituent of the invasive microenvironment that promotes progression, we investigated the effect of beta-alanine on breast cell viability and migration. beta-alanine was shown to reduce both cell migration and proliferation without acting in a cytotoxic fashion. Moreover, beta-alanine significantly increased malignant cell sensitivity to doxorubicin, suggesting a potential role as a co-therapeutic agent.
Conclusion: Taken together, our results suggest that beta-alanine may elicit several anti-tumor effects. Our observations support the need for further investigation into the mechanism(s) of action and specificity of beta-alanine as a co-therapeutic agent in the treatment of breast tumors
Differentiating Urban Forms: A Neighborhood Typology for Understanding Urban Water Systems
With rising populations and changing climates, urban areas need water systems capable of meeting a range of social, economic and environmental sustainability objectives. Different configurations of urban growth and development also produce varying water system outcomes. In this paper we develop a multi-dimensional classification scheme that identifies distinct configurations of ‘urban forms’ in Northern Utah, USA. We identified characteristics within urban landscapes that have been linked in the scientific literature to three types of water outcomes: water demand, water budgets, and water quality. Using publicly-available data at the census block scale, we create a typology of urban neighborhoods that share distinctive combinations of natural, built, and social structures that are expected to shape water system dynamics. The resulting typology provides a conceptual and empirical basis to generate hypotheses and design studies of complex urban water systems. We illustrate the value of the typology by using data from surveys of urban residents. While our typology classifications are unique to this region, the methodology relies on publicly available data and could be replicated in other urban areas
3D Electrophoresis-assisted lithography (3DEAL): 3D molecular printing to create functional patterns and anisotropic hydrogels
The ability to easily generate anisotropic hydrogel environments made from functional molecules with microscale resolution is an exciting possibility for the biomaterials community. This study reports a novel 3D electrophoresis‐assisted lithography (3DEAL) platform that combines elements from proteomics, biotechnology, and microfabrication to print well‐defined 3D molecular patterns within hydrogels. The potential of the 3DEAL platform is assessed by patterning immunoglobulin G, fibronectin, and elastin within nine widely used hydrogels and characterizing pattern depth, resolution, and aspect ratio. Furthermore, the technique's versatility is demonstrated by fabricating complex patterns including parallel and perpendicular columns, curved lines, gradients of molecular composition, and patterns of multiple proteins ranging from tens of micrometers to centimeters in size and depth. The functionality of the printed molecules is assessed by culturing NIH‐3T3 cells on a fibronectin‐patterned polyacrylamide‐collagen hydrogel and selectively supporting cell growth. 3DEAL is a simple, accessible, and versatile hydrogel‐patterning platform based on controlled molecular printing that may enable the development of tunable, chemically anisotropic, and hierarchical 3D environments
PseudoBase++: an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots
Pseudoknots have been recognized to be an important type of RNA secondary structures responsible for many biological functions. PseudoBase, a widely used database of pseudoknot secondary structures developed at Leiden University, contains over 250 records of pseudoknots obtained in the past 25 years through crystallography, NMR, mutational experiments and sequence comparisons. To promptly address the growing analysis requests of the researchers on RNA structures and bring together information from multiple sources across the Internet to a single platform, we designed and implemented PseudoBase++, an extension of PseudoBase for easy searching, formatting and visualization of pseudoknots. PseudoBase++ (http://pseudobaseplusplus.utep.edu) maps the PseudoBase dataset into a searchable relational database including additional functionalities such as pseudoknot type. PseudoBase++ links each pseudoknot in PseudoBase to the GenBank record of the corresponding nucleotide sequence and allows scientists to automatically visualize RNA secondary structures with PseudoViewer. It also includes the capabilities of fine-grained reference searching and collecting new pseudoknot information
Silkworms with Spider Silklike Fibers Using Synthetic Silkworm Chow Containing Calcium Lignosulfonate, Carbon Nanotubes, and Graphene
Silkworm silk has become increasingly relevant for material applications. However, the industry as a whole is retracting because of problems with mass production. One of the key problems is the inconsistent properties of the silk. A means by which to improve the silk material properties is through enhanced sericulture techniques. One possible technique is altering the feed of the silkworms to include single-wall carbon nanotubes (SWNTs) or graphene (GR). Recently published results have demonstrated substantial improvement in fiber mechanical properties. However, the effect of the surfactant used to incorporate those materials into the feed on the fiber mechanical properties in comparison to normal silkworm silk has not been studied or reported. Thus, the total effect of feeding the SWNT and GR in the presence of surfactants on silkworms is not understood. Our study focuses on the surfactant [calcium lignosulfonate (LGS)] and demonstrates that it alone results in appreciable improvement of mechanical properties in comparison to nontreated silkworm silk. Furthermore, our study demonstrates that mixing the LGS, SWNT, and GR directly into the artificial diet of silkworms yields improved mechanical properties without decline below the control silk at high doses of SWNT or GR. Combined, we present evidence that mixing surfactants, in this case LGS, directly with the diet of silkworms creates a high-quality fiber product that can exceed 1 GPa in tensile strength. With the addition of nanocarbons, either SWNT or GR, the improvement is even greater and consistently surpasses control fibers. However, feeding LGS alone is a more economical and practical choice to consistently improve the mechanical properties of silkworm fiber
Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions.
We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies
Methylome-wide Analysis of Chronic HIV Infection Reveals Five-Year Increase in Biological Age and Epigenetic Targeting of HLA
HIV-infected individuals are living longer on antiretro-viral therapy, but many patients display signs that in some ways resemble premature aging. To investigate and quantify the impact of chronic HIV infection on aging, we report a global analysis of the whole-blood DNA methylomes of 137 HIV+ individuals under sustained therapy along with 44 matched HIV- individuals. First,we develop and validate epigenetic models of aging that are independent of blood cell composition. Using these models, we find that both chronic and recent HIV infection lead to an average aging advancement of 4.9 years, increasing expected mortality risk by 19%. In addition, sustained infection results in global deregulation of the methylome across \u3e80,000 CpGs and specific hypomethylation of the region encoding the human leukocyte antigen locus (HLA).We find that decreased HLA methylation is predictive of lower CD4/CD8T cell ratio, linking molecular aging, epigenetic regulation, and disease progression
An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses
Advax is a polysaccharide-based adjuvant that potently stimulates vaccine immunogenicity without the increased reactogenicity seen with other adjuvants. This study investigated the immunogenicity of a novel Advax-adjuvanted Vero cell culture candidate vaccine against Japanese encephalitis virus (JEV) in mice and horses. The results showed that, in mice, a two-immunization, low-dose (50 ng JEV antigen) regimen with adjuvanted vaccine produced solid neutralizing immunity comparable to that elicited with live ChimeriVax-JE immunization and superior to that elicited with tenfold higher doses of a traditional non-adjuvanted JEV vaccine (JE-VAX; Biken Institute) or a newly approved alum-adjuvanted vaccine (Jespect; Novartis). Mice vaccinated with the Advax-adjuvanted, but not the unadjuvanted vaccine, were protected against live JEV challenge. Equine immunizations against JEV with Advax-formulated vaccine similarly showed enhanced vaccine immunogenicity, confirming that the adjuvant effects of Advax are not restricted to rodent models. Advax-adjuvanted JEV vaccine elicited a balanced T-helper 1 (Th1)/Th2 immune response against JEV with protective levels of cross-neutralizing antibody against other viruses belonging to the JEV serocomplex, including Murray Valley encephalitis virus (MVEV). The adjuvanted JEV vaccine was well tolerated with minimal reactogenicity and no systemic toxicity in immunized animals. The cessation of manufacture of traditional mouse brain-derived unadjuvanted JEV vaccine in Japan has resulted in a JEV vaccine shortage internationally. There is also an ongoing lack of human vaccines against other JEV serocomplex flaviviruses, such as MVEV, making this adjuvanted, cell culture-grown JEV vaccine a promising candidate to address both needs with one vaccine
MHC class II-alpha chain knockout mice support increased viral replication that is independent of their lack of MHC class II cell surface expression and associated immune function deficiencies
MHCII molecules are heterodimeric cell surface proteins composed of an α and β chain. These molecules are almost exclusively expressed on thymic epithelium and antigen presenting cells (APCs) and play a central role in the development and function of CD4 T cells. Various MHC-II knockout mice have been generated including MHC-IIAα-/- (I-Aα-/-), MHC-IIAβ-/- (I-β-/-) and the double knockout (I-Aαxβ-/-). Here we report a very striking observation, namely that alphaviruses including the avirulent strain of Semliki Forest virus (aSFV), which causes asymptomatic infection in wild-type C57BL6/J (B6) mice, causes a very acute and lethal infection in I-Aα-/-, but not in I-β-/- or I-Aαxβ-/-, mice. This susceptibility to aSFV is associated with high virus titres in muscle, spleen, liver, and brain compared to B6 mice. In addition, I-Aα-/- mice show intact IFN-I responses in terms of IFN-I serum levels and IFN-I receptor expression and function. Radiation bone marrow chimeras of B6 mice reconstituted with I-Aα-/- bone marrow expressed B6 phenotype, whereas radiation chimeras of I-Aα-/- mice reconstituted with B6 bone marrow expressed the phenotype of high viral susceptibility. Virus replication experiments both in vivo and in vitro showed enhanced virus growth in tissues and cell cultures derived form I-Aα-/- compared to B6 mice. This enhanced virus replication is evident for other alpha-, flavi- and poxviruses and may be of great benefit to producers of viral vaccines. In conclusion, I-Aα-/- mice exhibit a striking susceptibility to virus infections independent of their defective MHC-II expression. Detailed genetic analysis will be carried out to characterise the underlining genetic defects responsible for the observed phenomenon.Mohammed Alsharifi, Aulikki Koskinen, Danushka K. Wijesundara, Jayaram Bettadapura, Arno Müllbache
Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA
Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy
- …