61 research outputs found

    Gas identification based on bias induced hysteresis of a gas-sensitive SiC field effect transistor

    Get PDF
    In this work dynamic variation of gate bias is used on a gas-sensitive SiC field effect transistor ("GasFET") to optimize its sensitivity and increase its selectivity. Gate bias ramps introduce strong hysteresis in the sensor signal. The shape of this hysteresis is shown to be an appropriate feature both for the discrimination of various gases (ammonia, carbon monoxide, nitrogen monoxide and methane) as well as for different gas concentrations (250 and 500 ppm). The shape is very sensitive to ambient conditions as well as to the bias sweep rate. Thus, the influences of oxygen concentration, relative humidity, sensor temperature and cycle duration, i.e., sweep rate, are investigated and reasons for the observed signal changes, most importantly the existence of at least two different and competing processes taking place simultaneously, are discussed. Furthermore, it is shown that even for very fast cycles, in the range of seconds, the gas-induced shape change in the signal is strong enough to achieve a reliable separation of gases using gate bias cycled operation and linear discriminant analysis (LDA) making this approach suitable for practical application

    Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides

    Get PDF
    Two-dimensional (2D) materials, especially their most prominent member, graphene, have greatly influenced many scientific areas. Moreover, they have become a base for investigating the relativistic properties of condensed matter within the emerging field of Dirac physics. This has ignited an intense search for new materials where charge carriers behave as massless or massive Dirac fermions. Here, we theoretically show the existence of Dirac electrons in a series of 2D transition-metal carbides, known as MXenes. They possess twelve conical crossings in the 1st Brillouin zone with giant spin-orbit splitting. Our findings indicate that the 2D band structure of MXenes is protected against external perturbations and preserved even in multilayer phases. These results, together with the broad possibilities to engineer the properties of these materials phases, make Dirac MXenes a potential candidate for studying and developing novel Dirac-physics-based technologies.Comment: 4 figures and supplementar

    Методика вивчення контрольно-вимірювальних приладів у курсі «Технології» основної школи

    Get PDF
    (uk) У статті запропонована методика вивчення контрольно-вимірювальних приладів при вивчені шкільного курсу «Технології» з використанням сучасного електронного вимірювального обладнання.(en) In the article the technique of studying instrumentation to teach school course "Technology" using modern electronic measuring equipment

    Vibrational study of ammonia adsorption on Pt/SiO2

    No full text
    Vibrational properties of surface species formed upon NH3 adsorption on Pt/SiO2, model system for the gas sensitive part in ammonia sensors based on field effect devices, have been investigated with in situ DRIFT spectroscopy. Experiments have been performed for a series of samples with different Pt loading at three temperatures, 50, 150 and 300 degreesC, and in the absence and presence of oxygen. In addition, electronic structure calculations and vibrational analysis have been performed within the density functional theory (DFT) for NH3 and NH2 species adsorbed on platinum and hydroxylated silica model systems. Observations from both DRIFT spectra and DFT calculations indicate that NH3 is more strongly bound to platinum than to silanol groups on the SiO2 support. Vibrational modes assigned to NH2 appeared in the DRIFT experiments, indicative of NH3 dissociation, an interpretation supported by the calculations. Exposure of O-2 was found to have minor effect on the vibrational spectrum at 50 degreesC. However, at 150 degreesC an increase of the vibration band assigned to the NH2 surface species was observed together with formation of gas phase N2O for samples with high platinum content. Thus, ammonia is oxidised over Pt at this temperature and oxygen is most likely facilitating ammonia dissociation
    corecore