16 research outputs found
Dynamic phase separation of fluid membranes with rigid inclusions
Membrane shape fluctuations induce attractive interactions between rigid
inclusions. Previous analytical studies showed that the fluctuation-induced
pair interactions are rather small compared to thermal energies, but also that
multi-body interactions cannot be neglected. In this article, it is shown
numerically that shape fluctuations indeed lead to the dynamic separation of
the membrane into phases with different inclusion concentrations. The tendency
of lateral phase separation strongly increases with the inclusion size. Large
inclusions aggregate at very small inclusion concentrations and for relatively
small values of the inclusions' elastic modulus.Comment: 6 pages, 6 figure
Specific biomembrane adhesion-Indirect lateral interactions between bound receptor molecules
We studied biomembrane adhesion using the micropipet aspiration technique. Adhesion was caused by contact site A, a laterally mobile and highly specific cell adhesion molecule from Dictyostelium discoideum, reconstituted in lipid vesicles of DOPC (L-alpha-dioleoylphosphatidylcholine) with an addition of 5 mol % DOPE-PEG(2000) (1,2-diacyl-sn-glycero-3-phosphatidylethanolamine-N-[poly(ethyleneglycol) 2000]). The "fuzzy" membrane mimics the cellular plasma membrane including the glycocalyx. We found adhesion and subsequent receptor migration into the contact zone. Using membrane tension jumps to probe the equation of state of the two-dimensional "gas" of bound receptor pairs within the contact zone, we found strong, attractive lateral interactions
