79 research outputs found

    Synthesis of Novel Piperazine-linked Anthranilic Acids as Potential Small Molecule Kinase Inhibitors

    Get PDF
    Substituted anthranilic acid and piperazines were used as building blocks to prepare two libraries of  compounds, with the aim being that they would exhibit biochemical activity as small molecule kinase inhibitors. The synthesized anthranilamidepiperazine compounds were subsequently tested against a panel of kinases including EGFR, Abl, Akt and Aurora B.KEYWORDS: Small molecule kinase inhibitors, anthranilic acid, piperazines, EGFR

    Interaction between ionic lattices and superconducting condensates

    Full text link
    The interaction of the ionic lattice with the superconducting condensate is treated in terms of the electrostatic force in superconductors. It is shown that this force is similar but not identical to the force suggested by the volume difference of the normal and superconducting states. The BCS theory shows larger deviations than the two-fluid model.Comment: 6 pages no figure

    Bernoulli potential in type-I and weak type-II supercoductors: II. Surface dipole

    Full text link
    The Budd-Vannimenus theorem is modified to apply to superconductors in the Meissner state. The obtained identity links the surface value of the electrostatic potential to the density of free energy at the surface which allows one to evaluate the electrostatic potential observed via the capacitive pickup without the explicit solution of the charge profile.Comment: 7 pages, 1 figur

    Surface deformation caused by the Abrikosov vortex lattice

    Full text link
    In superconductors penetrated by Abrikosov vortices the magnetic pressure and the inhomogeneous condensate density induce a deformation of the ionic lattice. We calculate how this deformation corrugates the surface of a semi-infinite sample. The effect of the surface dipole is included

    Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair

    Get PDF
    Mature tRNAHis has at its 5′-terminus an extra guanylate, designated as G−1. This is the major recognition element for histidyl-tRNA synthetase (HisRS) to permit acylation of tRNAHis with histidine. However, it was reported that tRNAHis of a subgroup of α-proteobacteria, including Caulobacter crescentus, lacks the critical G−1 residue. Here we show that recombinant C. crescentus HisRS allowed complete histidylation of a C. crescentus tRNAHis transcript (lacking G−1). The addition of G−1 did not improve aminoacylation by C. crescentus HisRS. However, mutations in the tRNAHis anticodon caused a drastic loss of in vitro histidylation, and mutations of bases A73 and U72 also reduced charging. Thus, the major recognition elements in C. crescentus tRNAHis are the anticodon, the discriminator base and U72, which are recognized by the divergent (based on sequence similarity) C. crescentus HisRS. Transplantation of these recognition elements into an Escherichia coli tRNAHis template, together with addition of base U20a, created a competent substrate for C. crescentus HisRS. These results illustrate how a conserved tRNA recognition pattern changed during evolution. The data also uncovered a divergent orthogonal HisRS/tRNAHis pair

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period

    Multi-locus analysis resolves the epidemic finch strain of Trichomonas gallinae and suggests introgression from divergent trichomonads

    Get PDF
    In Europe, Trichomonas gallinae recently emerged as a cause of epidemic disease in songbirds. A highly virulent and clonal strain of the parasite, first found in the UK, has become the predominant strain there and spread to continental Europe. Discriminating this epidemic strain of T. gallinae from other strains necessitated development of multi-locus sequence typing (MLST). Development of the MLST was facilitated by the assembly and annotation of a 54.7 Mb draft genome of a cloned stabilate of the A1 European finch epidemic strain (isolated from Greenfinch, Carduelis chloris, XT-1081/07 in 2007) containing 21,924 protein coding genes. This enabled construction of a robust 19 locus MLST based on existing typing loci for Trichomonas vaginalis and T. gallinae. Our MLST has the sensitivity to discriminate strains within existing genotypes confidently, and resolves the American finch A1 genotype from the epidemic European finch A1 genotype. Interestingly, one isolate we obtained from a captive black-naped fruit dove Ptilinopsus melanospilus, was not truly T. ¬¬¬gallinae but a hybrid of T. gallinae with a distant trichomonad lineage. Phylogenetic analysis of the individual loci in this fruit dove provides evidence of gene flow between distant trichomonad lineages at two of the 19 loci examined and may provide precedence for the emergence of other hybrid trichomonad genomes including T. vaginalis

    A protein functional leap: how a single mutation reverses the function of the transcription regulator TetR

    Get PDF
    Today's proteome is the result of innumerous gene duplication, mutagenesis, drift and selection processes. Whereas random mutagenesis introduces predominantly only gradual changes in protein function, a case can be made that an abrupt switch in function caused by single amino acid substitutions will not only considerably further evolution but might constitute a prerequisite for the appearance of novel functionalities for which no promiscuous protein intermediates can be envisaged. Recently, tetracycline repressor (TetR) variants were identified in which binding of tetracycline triggers the repressor to associate with and not to dissociate from the operator DNA as in wild-type TetR. We investigated the origin of this activity reversal by limited proteolysis, CD spectroscopy and X-ray crystallography. We show that the TetR mutant Leu17Gly switches its function via a disorder–order mechanism that differs completely from the allosteric mechanism of wild-type TetR. Our study emphasizes how single point mutations can engender unexpected leaps in protein function thus enabling the appearance of new functionalities in proteins without the need for promiscuous intermediates
    corecore