409 research outputs found

    Modeling cancer metabolism on a genome scale

    Get PDF
    Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field

    Common origin of the gelsolin gene variant in 62 Finnish AGel amyloidosis families

    Get PDF
    Finnish gelsolin amyloidosis (AGel amyloidosis) is an autosomal dominantly inherited systemic disorder with ophthalmologic, neurologic and dermatologic symptoms. Only the gelsolin (GSN) c.640G>A variant has been found in the Finnish patients thus far. The purpose of this study was to examine whether the Finnish patients have a common ancestor or whether multiple mutation events have occurred at c.640G, which is a known mutational hot spot. A total of 79 Finnish AGel amyloidosis families including 707 patients were first discovered by means of patient interviews, genealogic studies and civil and parish registers. From each family 1-2 index patients were chosen. Blood samples were available from 71 index patients representing 64 families. After quality control, SNP array genotype data were available from 68 patients from 62 nuclear families. All the index patients had the same c.640G>A variant (rs121909715). Genotyping was performed using the Illumina CoreExome SNP array. The homozygosity haplotype method was used to analyse shared haplotypes. Haplotype analysis identified a shared haplotype, common to all studied patients. This shared haplotype included 17 markers and was 361 kb in length (GRCh37 coordinates 9:124003326–124364349) and this level of haplotype sharing was found to occur highly unlikely by chance. This GSN haplotype ranked as the largest shared haplotype in the 68 patients in a genome-wide analysis of haplotype block lengths. These results provide strong evidence that although there is a known mutational hot spot at GSN c.640G, all of the studied 62 Finnish AGel amyloidosis families are genetically linked to a common ancestor.Peer reviewe

    Synthesis and Cytotoxicity Evaluation of Spirocyclic Bromotyrosine Clavatadine C Analogs

    Get PDF
    Marine-originated spirocyclic bromotyrosines are considered as promising scaffolds for new anticancer drugs. In a continuation of our research to develop potent and more selective anticancer compounds, we synthesized a library of 32 spirocyclic clavatadine analogs by replacing the agmatine, i.e., 4-(aminobutyl)guanidine, side chain with different substituents. These compounds were tested for cytotoxicity against skin cancer using the human melanoma cell line (A-375) and normal human skin fibroblast cell line (Hs27). The highest cytotoxicity against the A-375 cell line was observed for dichloro compound 18 (CC50 0.4 ± 0.3 µM, selectivity index (SI) 2). The variation of selectivity ranged from SI 0.4 to reach 2.4 for the pyridin-2-yl derivative 29 and hydrazide analog of 2-picoline 37. The structure–activity relationships of the compounds in respect to cytotoxicity and selectivity toward cancer cell lines are discussed

    Educational achievement of children with selected major congenital anomalies and associated factors: a Finnish registry-based study

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of the European Public Health Association. BACKGROUND: Children with major congenital anomalies may be at risk of poor educational outcomes. We aimed to evaluate the educational achievement of children born with major congenital anomalies compared with children without major congenital anomalies in relation to sociodemographic factors. METHODS: We performed a registry-based study including 401 544 children in Finland, graduates of the compulsory school who applied to secondary education. We used health data from the Finnish Register of Congenital Malformations for children born from 1995 to 2002 linked with education data from the Finnish Ministry of Education and Culture. We used generalized linear regression to compare the mean grade differences of children with specific major congenital anomalies and \u27All anomalies\u27 subgroup (major congenital anomalies, chromosomal syndromes, and multiple anomalies) with reference children. RESULTS: Children with major congenital anomalies were less likely to apply for further education than reference children (88.0% vs. 96.8%; odds ratio = 4.13; 95% confidence interval, 3.92-4.36). For most non-chromosomal congenital anomalies, children born with congenital anomalies had similar educational achievement to the reference children. For the \u27All anomalies\u27 subgroup, children with congenital anomalies had lower educational achievement than reference children. Among children with congenital anomalies, male sex, lower maternal educational levels and younger maternal age were associated with lower educational achievement. CONCLUSIONS: For children applying to further education, most non-chromosomal congenital anomalies were not associated with lower educational achievement. Nevertheless, efforts are needed to improve educational achievement in children with major congenital anomalies associated with maternal sociodemographic background

    Synthesis of novel purpurealidin analogs and evaluation of their effect on the cancer-relevant potassium channel KV10.1

    Get PDF
    In the search for novel anticancer drugs, the potassium channel K(V)10.1 has emerged as an interesting cancer target. Here, we report a new group of K(V)10.1 inhibitors, namely the purpurealidin analogs. These alkaloids are produced by the Verongida sponges and are known for their wide variety of bioactivities. In this study, we describe the synthesis and characterization of 27 purpurealidin analogs. Structurally, bromine substituents at the central phenyl ring and a methoxy group at the distal phenyl ring seem to enhance the activity on K(V)10.1. The mechanism of action of the most potent analog 5 was investigated. A shift of the activation curve to more negative potentials and an apparent inactivation was observed. Since K(V)10.1 inhibitors can be interesting anticancer drug lead compounds, the effect of 5 was evaluated on cancerous and non-cancerous cell lines. Compound 5 showed to be cytotoxic and appeared to induce apoptosis in all the evaluated cell lines.Peer reviewe

    Asymmetry in catalysis by Thermotoga maritima membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor

    Get PDF
    Membrane-bound pyrophosphatases are homodimeric integral membrane proteins that hydrolyze pyrophosphate into orthophosphates, coupled to the active transport of protons or sodium ions across membranes. They are important in the life cycle of bacteria, archaea, plants, and parasitic protists, but no homologous proteins exist in vertebrates, making them a promising drug target. Here, we report the first nonphosphorus allosteric inhibitor of the thermophilic bacterium Thermotoga maritima membrane-bound pyrophosphatase and its bound structure together with the substrate analog imidodiphosphate. The unit cell contains two protein homodimers, each binding a single inhibitor dimer near the exit channel, creating a hydrophobic clamp that inhibits the movement of β-strand 1–2 during pumping, and thus prevents the hydrophobic gate from opening. This asymmetry of inhibitor binding with respect to each homodimer provides the first clear structural demonstration of asymmetry in the catalytic cycle of membrane-bound pyrophosphatases

    Structure-Function Studies of Sponge-Derived Compounds on the Cardiac CaV3.1 Channel

    Get PDF
    T-type calcium (CaV3) channels are involved in cardiac automaticity, development, and excitation–contraction coupling in normal cardiac myocytes. Their functional role becomes more pronounced in the process of pathological cardiac hypertrophy and heart failure. Currently, no CaV3 channel inhibitors are used in clinical settings. To identify novel T-type calcium channel ligands, purpurealidin analogs were electrophysiologically investigated. These compounds are alkaloids produced as secondary metabolites by marine sponges, and they exhibit a broad range of biological activities. In this study, we identified the inhibitory effect of purpurealidin I (1) on the rat CaV3.1 channel and conducted structure–activity relationship studies by characterizing the interaction of 119 purpurealidin analogs. Next, the mechanism of action of the four most potent analogs was investigated. Analogs 74, 76, 79, and 99 showed a potent inhibition on the CaV3.1 channel with IC50′s at approximately 3 µM. No shift of the activation curve could be observed, suggesting that these compounds act like a pore blocker obstructing the ion flow by binding in the pore region of the CaV3.1 channel. A selectivity screening showed that these analogs are also active on hERG channels. Collectively, a new class of CaV3 channel inhibitors has been discovered and the structure–function studies provide new insights into the synthetic design of drugs and the mechanism of interaction with T-type CaV channels

    Mutations in the Cholesterol Transporter Gene ABCA5 Are Associated with Excessive Hair Overgrowth

    Get PDF
    Inherited hypertrichoses are rare syndromes characterized by excessive hair growth that does not result from androgen stimulation, and are often associated with additional congenital abnormalities. In this study, we investigated the genetic defect in a case of autosomal recessive congenital generalized hypertrichosis terminalis (CGHT) (OMIM135400) using whole-exome sequencing. We identified a single base pair substitution in the 5′ donor splice site of intron 32 in the ABC lipid transporter gene ABCA5 that leads to aberrant splicing of the transcript and a decrease in protein levels throughout patient hair follicles. The homozygous recessive disruption of ABCA5 leads to reduced lysosome function, which results in an accumulation of autophagosomes, autophagosomal cargos as well as increased endolysosomal cholesterol in CGHT keratinocytes. In an unrelated sporadic case of CGHT, we identified a 1.3 Mb cryptic deletion of chr17q24.2-q24.3 encompassing ABCA5 and found that ABCA5 levels are dramatically reduced throughout patient hair follicles. Collectively, our findings support ABCA5 as a gene underlying the CGHT phenotype and suggest a novel, previously unrecognized role for this gene in regulating hair growth
    corecore