350 research outputs found

    Evolution of a localized thermal explosion in a reactive gas

    Get PDF
    Experimental observations of ignition in premixed gaseous reactants indicate that perfectly homogeneous initiation is practically unrealizable. Instead, combustion first sets in, as a rule, at small, discrete sites where inherent inhomogeneities cause chemical activity to proceed preferentially and lead to localized explosions. Combustion waves propagating away from these hot spots or reaction centers eventually envelop the remaining bulk. This study examines the spatial structure and temporal evolution of a hot spot for a model involving Arrhenius kinetics. The hot spot, characterized by peaks in pressure and temperature with little diminution in local density, is shown to have one of two possible self-similar structures. The analysis employs a combination of asymptotics and numerics, and terminates when pressure and temperature in the explosion have peaked

    Ignition of thermally sensitive explosives between a contact surface and a shock

    Get PDF
    The dynamics of ignition between a contact surface and a shock wave is investigated using a one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing and contrasting the solutions with those of the ignition process between a piston and a shock, considered previously. The large activation energy asymptotic solutions are found to be qualitatively different from the piston driven shock case, in that thermal runaway first occurs ahead of the contact surface, and both forward and backward moving reaction waves emerge. These waves take the form of quasi-steady weak detonations that may later transition into strong detonation waves. For the finite activation energies considered in the numerical simulations, the results are qualitatively different to the asymptotic predictions in that no backward weak detonation wave forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance of the contact surface. The above conclusions are relevant to gas phase equation of state models. However, when a large polytropic index more representative of condensed phase explosives is used, the large activation energy asymptotic and finite activation energy numerical results are found to be in quantitative agreement

    Reactive-diffuse System with Arrhenius Kinetics: Peculiarities of the Spherical Goemetry

    Full text link
    The steady reactive-diffusive problem for a non isothermal permeable pellet with first-order Arrhenius kinetics is studied. In the large activation-energy limit, asymptotic solutions are derived for the spherical geometry. The solutions exhibit multiplicity and it is shown that a suitable choice of parameters can lead to an arbitrarily large number of solutions, thereby confirming a conjecture based upon past computational experiments. Explicit analytical expressions are given for the multiplicity bounds (ignition and extinction limits). The asymptotic results compare very well with those obtained numerically, even for moderate values of the activation energy

    Existence of radial stationary solutions for a system in combustion theory

    Full text link
    In this paper, we construct radially symmetric solutions of a nonlinear noncooperative elliptic system derived from a model for flame balls with radiation losses. This model is based on a one step kinetic reaction and our system is obtained by approximating the standard Arrehnius law by an ignition nonlinearity, and by simplifying the term that models radiation. We prove the existence of 2 solutions using degree theory

    Scaling, Propagation, and Kinetic Roughening of Flame Fronts in Random Media

    Full text link
    We introduce a model of two coupled reaction-diffusion equations to describe the dynamics and propagation of flame fronts in random media. The model incorporates heat diffusion, its dissipation, and its production through coupling to the background reactant density. We first show analytically and numerically that there is a finite critical value of the background density, below which the front associated with the temperature field stops propagating. The critical exponents associated with this transition are shown to be consistent with mean field theory of percolation. Second, we study the kinetic roughening associated with a moving planar flame front above the critical density. By numerically calculating the time dependent width and equal time height correlation function of the front, we demonstrate that the roughening process belongs to the universality class of the Kardar-Parisi-Zhang interface equation. Finally, we show how this interface equation can be analytically derived from our model in the limit of almost uniform background density.Comment: Standard LaTeX, no figures, 29 pages; (to appear in J. Stat. Phys. vol.81, 1995). Complete file available at http://www.physics.helsinki.fi/tft/tft.html or anonymous ftp at ftp://rock.helsinki.fi/pub/preprints/tft

    Strategic Sensemaking and Political Connections in Unstable Institutional Contexts

    Get PDF
    Emerging economies are often characterized by pervasive institutional changes and resultant institutional voids. In the absence of strong formal institutions, firms rely on informal institutions to fill these voids. This article argues that the process of sensemaking for firms in turbulent environments is continuous and dependent on cyclical adjustments connecting performance via a feedback loop to scanning and interpretation. Far from being a one-time occurrence, environmental sensemaking is a process operating in accord with continuous environmental changes. This study’s findings derive from an in-depth analysis of a Russian pharmaceutical firm and an Indian telecommunications firm, and demonstrate that entrepreneurs make sense and gain legitimacy through political connections. The study further finds that improvements in institutional environments reduce the salience of political networks, thereby creating a choice for firms to rely on formed market mechanisms or continue along the path of political connections that evolve to public–private partnerships

    Design and Construction of Multigenic Constructs for Plant Biotechnology Using the GoldenBraid Cloning Strategy

    Full text link
    GoldenBraid (GB) is an iterative and standardized DNA assembling system specially designed for Multigene Engineering in Plant Synthetic Biology. GB is based on restriction–ligation reactions using type IIS restriction enzymes. GB comprises a collection of standard DNA pieces named “GB parts” and a set of destination plasmids (pDGBs) that incorporate the multipartite assembly of standardized DNA parts. GB reactions are extremely efficient: two transcriptional units (TUs) can be assembled from several basic GBparts in one T-DNA less than 24 h. Moreover, larger assemblies comprising 4–5 TUs are routinely built in less than 2 working weeks. Here we provide a detailed view of the GB methodology. As a practical example, a Bimolecular Fluorescence Complementation construct comprising four TUs in a 12 kb DNA fragment is presented.Sarrion-Perdigones, A.; Palací, J.; Granell Richart, A.; Orzáez Calatayud, DV. (2014). Design and Construction of Multigenic Constructs for Plant Biotechnology Using the GoldenBraid Cloning Strategy. Methods in Molecular Biology. 1116:133-151. doi:10.1007/978-1-62703-764-8_10S1331511116Haseloff J, Ajioka J (2009) Synthetic biology, history, challenges and prospects. J R Soc Interface 6(Suppl 4):S389–S391Check E (2005) Synthetic biology, designs on life. Nature 438:417–418Kosuri S, Eroshenko N, LeProust EM et al (2010) Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nat Biotechnol 28:1295–1299Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology, from parts to pathways and beyond. Integr Biol 3:109–118Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345Gibson DG, Glass JI, Lartigue C et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56Sarrion-Perdigones A, Falconi EE, Zandalinas SI et al (2011) GoldenBraid, an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6:e21622Sarrion-Perdigones A, Vilar-Vazquez M et al (2013) GoldenBraid2.0, A comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162:1618–1631Engler C, Gruetzner R, Kandzia R (2009) Golden gate shuffling, a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647Bracha-Drori K, Shichrur K, Katz A et al (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 40:419–427Smaczniak C, Immink RG, Muino JM et al (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109:1560–1565de Folter S, Immink RG, Kieffer M et al (2005) Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17:1424–1433Lorenz WW, McCann RO, Longiaru M et al (1991) Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A 88:4438–4442Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96: 14147–14152Hellens RP, Edwards EA, Leyland NR et al (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26: 1301–1308Kapila J, DeRycke R, VanMontagu M et al (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–10

    The CS1 segment of fibronectin is involved in human OSCC pathogenesis by mediating OSCC cell spreading, migration, and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The alternatively spliced V region or type III connecting segment III (IIICS) of fibronectin is important in early development, wound healing, and tumorigenesis, however, its role in oral cancer has not been fully investigated. Thus, we investigated the role of CS-1, a key site within the CSIII region of fibronectin, in human oral squamous cell carcinoma (OSCC).</p> <p>Methods</p> <p>To determine the expression of CS-1 in human normal and oral SCC tissue specimens immunohistochemical analyses were performed. The expression of CS1 was then associated with clinicopathological factors. To investigate the role of CS-1 in regulating OSCC cell spreading, migration and invasion, OSCC cells were assayed for spreading and migration in the presence of a CS-1 peptide or a CS-1 blocking peptide, and for invasion using Matrigel supplemented with these peptides. In addition, integrin α4siRNA or a focal adhesion kinase (FAK) anti-sense oligonucleotide was transfected into OSCC cells to examine the mechanistic role of integrin α4 or FAK in CS1-mediated cell spreading and migration, respectively.</p> <p>Results</p> <p>CS-1 expression levels were significantly higher in OSCC tissues compared to normal tissues (p < 0.05). Also, although, high levels of CS-1 expression were present in all OSCC tissue samples, low-grade tumors stained more intensely than high grade tumors. OSCC cell lines also expressed higher levels of CS-1 protein compared to normal human primary oral keratinocytes. There was no significant difference in total fibronectin expression between normal and OSCC tissues and cells. Inclusion of CS-1 in the in vitro assays enhanced OSCC cell spreading, migration and invasion, whereas the CS1 blocking peptide inhibited these processes. Suppression of integrin α4 significantly inhibited the CS1-mediated cell spreading. Furthermore, this migration was mediated by focal adhesion kinase (FAK), since FAK suppression significantly blocked the CS1-induced cell migration.</p> <p>Conclusion</p> <p>These data indicate that the CS-1 site of fibronectin is involved in oral cancer pathogenesis and in regulating OSCC cell spreading, migration and invasion.</p
    • …
    corecore