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Abstract

Experimental observations of ignition in premixed gaseous
reactants indicate that perfectly homogeneous initiation is
practically unrealizable. Instead, combustion first sets in, as a
rule, at small, discrete sites where inherent inhomogeneities cause
chemical activity to proceed preferentially and lead to localized
explosions. Combustion waves propagating away from these "hot
spots" or "reaction centers" eventually envelope the remaining
bulk.

This study examines the spatial structure and temporal evolution
of a hot spot for a model involving Arrhenius kinetics. The hot
spot, characterized by peaks in pressure and temperature with
little diminution in local density, is shown to have one of two
possible self-similar structures. The analysis employs a
combination of asymptotics and numerics, and terminates when
pressure and temperature in the explosion have peaked.
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1. Introduction

This paper descibes mathematically the birth and growth of a hot
spot, or localized thermal explosion, in a premixed reactive gas.

Experimental observations on the initiation of combustion in
gases at high temperatures, in shock tubes and elsewhere, have
demonstrated conclusively that spatially homogeneous combustion is
essentially an unattainable ideal. In fact, ignition first sets in
locally, in small volume elements at discrete sites, where chemical
reaction proceeds preferentially due to inherent imperfections in
the system. In due course, combustion waves originating from
localized explosions occuring at these "hot spots", "reactiaon
centers” or "exothermic centers" envelope the entire reacting mass.
The role played by these sites as precursors of more dramatic
combustion phenomena is revealed with unsurpassed clarity in Urtiew
and Oppenheim’'s [1] photographic records of deflagration-to—
detonation transition in a Hydrogen—Oxygen mixture confined to a
tube. These photographs show that as the deflagration travels down
the tube, it accelerates and evolves into a highly folded turbulent
flame, preceded by a so—called precursor shock. Eventually, an
exothermic center is formed in the vicinity of the flame, near the
tube wall. The localized explosion in this center creates a blast
wave which propagates through the preconditioned mixture behind the
precursor shock and ultimately evolves into a fully—-developed
detonation. The same feature appears in other modes of detonation-
initiation, as well as in other geometric configurations.

The early analyses of reaction—center dynamics are due to Zajac

and Oppenheim (2] and Meyer and Oppenheim [3]1. In these studies
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the reaction center is assumed to be a spatially homogeneous source
of chemical energy, capable of expansion and separated from its
inert surroundings by an impermeable barrier, across which only
momentum transfer can occur. Either by prescribing a specific
reaction scheme, or by specifying an energy release profile within
the center, the above authors were able to compute the resulting
pressure pulse.

In this paper the reaction center is treated as part and
parcel of the reacting medium rather than an isolated entity in an
inert atmosphere, and is found to have a definite spatial
structure. The aim of this paper is to describe this structure and
to study its temporal evolution in a plane, one-dimensional
framework, under the asssumption that the reactive gas undergoes a
single, one-step, first-order, irreversible chemical reaction of
the Arrhenius type. One may argue that the simple overall kinetic
scheme adopted here is too idealized to be realistic. However, for
large activation energies, the kinetics does capture an essential
attribute of most combustion systems, namely, a reaction rate which
accelerates rapidly with increase in temperature. Thus the model
is quite appropriate for studying problems, such as the one at
hand, which owe their genesis to the interaction between
gasdynamics and chemical heat release at highly temperature-
sensitive rates.

The configuration of the system is so prescribed as to provoke
the development of a single hot spot, and this can be accomplished
in a variety of ways. For example, the shock-induced thermal-

runaway studies of Clarke and Cant [4] and Jackson and Kapila [31]
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considered a semi—infinite expanse of gas ignited by a piston-
driven shock, thereby creating a hot spot at the piston face.
Instead, the present work assumes that the gas is confined between
two parallel planes, and that its initial state possesses a slight
spatial nonuniformity. (In a practical situation these non-
uniformities may be caused by a variety of factors, such as
turbulence, interacting pressure waves, or, in the case of
condensed explosives, material imperfections.) The mathematical
model leads to an initial-boundary value problem for the equations
of reactive gasdynamics. An asymptotic solution is developed in
the limit of large activation energy, and the analysis is carried
as far as the end of the localized explosion within the center.
The subsequent expansion of the center, and the eventual generation
of a blast wave, will be the subject of a future publication.

The temporal evolution of the explosion occurs in two stages,
beginning with the induction stage. Here the state of the gas is a
small perturbation of the initial state and the underlying physical
processes are those of linearized acoustics coupled to a weak but
nonlinear chemical reaction. The reduced equations require a
numerical solution (see {41 and [S51) which exhibits local thermal
runaway. Induction is followed by the explosion stage, which
consists of several distinct spatial zones. There is the
practically frozen outer zone, and a rapidly shrinking inner zone
or layer in which intense chemical activity leads to an explosive
growth of temperature and pressure. Nonlinear chemistry is again
coupled to linearized gasdynamics, but now the linearization is

about an atmosphere undergoing a spatially homogeneous thermal
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explosion. As the layer shrinks, it recedes away from the outer
zone, thereby creating an intermediate zone which is frozen in
time. Although highly nonlinear, the explosion stage is amenable
to analysis because gasdynamics is of secondary importance;
temporal variations are much too rapid for the gas to undergo
significant expansion.

For the specific reaction scheme under consideration it is found
that the reaction center can have one of two posible spatial
structures, depending upon whether the temperature profile within
the hot spot has a sharp peak or a rounded peak (Figure 1). The
former typifies hot spots originating at boundaries (e.g., a piston
face), and the latter those occuring in the interior of the vessel.
These structures, which will be referred to as the "Type B"
(boundary-type) or "Type I" (internal type), are both self-similar.
The former is described below in detail, with only the results for
the latter given in section 6. In addition to these two structures
there exists a third, described briefly in the Appendix; it is
singular and corresponds to very special initial conditions.

The specific configuration under study here was also examined,
with similar methods, by Poland and Kassoy [6]1. Their analysis
differs from ours in one crucial respect; they considered the
distinguished limit in which the spatially homogeneous induction
time at the initial state and the conduction time across the vessel
are of the same order, i.e., the Frank-Kamanetskii number § is of
order unity, albeit supercritical. In our analysis the induction
time is comparable to the acoustic time across the vessel, i.e., §

is very large. In physical terms, the explosive mixture being
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considered here has a faster reaction rate.

2. The Basic Equations, and Betup

The enuations of reactive nagsdvnamirs for nlane,

unsteady motion are (71

(2.1a)
(2.1b)
(2.1c)
- (2.1d)

(2.1e)

where

(2.1€)

Here p,

pp +up, + pu, =0,
pAluy + uu ) + (1/X)p, = O,

ATy + uT,) — C(X-1)/¥1(py + up,) = Bw,

PLYy + uY,) = —w,

p = AT,

w = [1/(B88) IpYexp(8-6/T).

p, Ty u and Y are, respectively, the gas pressure, density,

temperature, velocity and reactant mass fraction.

The variables

have been made dimensionless with respect to a constant reference

state pg, Pgy Tg and Y,.

speed c,, defined by

co = L¥pg/pylt’/2,

Velocity is referred to the acoustic

time to t,, the homogeneous induction time at the reference state,

and length to coto.

The diffusion terms have been left out because

they are much too small to play a role in the problem under study.
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The dimensionless parameters appearing above are the specific—heats

ratio ¥, the chemical heat release 8 and the activation energy &.
Let the reacting gas be confined to the interval 0 < x < a. At

the walls the appropriate boundary conditions are

(2.2) w(0,t) = uta,t) = O.

The initial state of the gas is taken to be an o™ perturbation

of the spatially homogeneous and stationary reference state, i.e.,

(2.3a) utx,0) = 8 lu, (x,0),

(2.3b) $(x,0) =1 + 1%, (x,0) for =T, p, Y and p,

where the precise specification of u,(x,0) and Qltx,O) must await

the next section. Note that

(2.3c) Ppx,0) = py(x,0) — Ty(x,0)

in accordance with the gas law (Z.1e). An asymptotic solution of the
initial -boundary—-value problem (2.1)-(2.3) is sought in the limit

8 > o, with B and ¥ fixed and 0(1), until the localized explosion

has reached completion. The various stages of evolution are

detailed in the following sections.

3. The Induction Stage
The initial conditions (2.3) suggest that, at least initially,

the state of the gas remains an o~ 1) perturbation of the
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reference state. During this period, referred to as the induction

stage, one therefore seeks the expansions

(3.1) u~01u1+..., §~1+9"i§1+...,

for =T, p, Y and p

which, upon substitution into the set (2.1) yield the leading-order

disturbance equations

(3.2a) (3/3t =+ 3/3x)(p1 + Yuy) = Yexp(Ty),
(3.2b) 3/3LL¥Ty — (F-1)py1 = Yexp(Ty),
(3.2c) Py = py — T3y Yy/3t = —(1/B)exp(T,).

Except for the nonlinear source term, eqns. (3.2Za,b) are simply
those of linearized acoustics in a uniform atmosphere. It is a
simple matter to integrate them along the characteristics, as was
done in [4] and [5] for a different configuration. During
induction it is enough to concentrate on the variables T,, p; and
uy, because once they are known, the first eqn. in (3.2c) yields Py

while the second, combined with (3.2b) and integrated, determines

Yy according to the expression

(3.2d) Ty - Cr-1)/¥1py + BYy = T{(x,0) = [(¥=1)/¥1p, (x,0)

+ BY4 (x,0).

Equations (3.2) need to be solved numerically, and this was done

for




and for a variety of smooth initial conditions and interval lengths
a. A high-resolution, adaptive 0ODE integrator was employed to
integrate along the characteristics. All computations displayed
thermal runaway, characterized by the unboundedness of T; and p,;
somewhere in the interval [0,al at a finite time ty- The numerical
results can all be summarized by considering two representative
cases, for which the initial values of pressure and mass fraction
correspond to those at the reference state and the initial velocity

is zero, i.e.,

(3.3a) PL{x,0) = Y{(x,0) = uy(x,0) = O,

while the initial temperature perturbations are prescribed as

(3.3b) T{{x,0) = bll-(x/a)] for case I, bf1-(x/a)2] for case II.

(Numerical results to be presented below correspond to a = 0.8, b =
0.5.) In both cases the initial disturbance has a single maximum
at x = O, causing it to become the site of thermal runaway. The
essential difference between the two cases is that in I the
temperature disturbance has a nonzero spatial gradient (sharp peak)
and in II a zero spatial gradient (rounded peak), at x = 0. Thus I
typifies a hot spot located at the boundary (e.g., the shock
configuration discussed in [4] and [51), and II an internal hot

spot (easily visualized by a symmetric reflection about the
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origin). Henceforth the two cases will be referred to,
respectively, as Type B (boundary) and Type I (internal). Their
spatial structures, it turns out, are different.

In the following sections the Type-B problem is discusased in
detail. The Type-1l problem can be treated analogously and is, in
fact, slightly simpler to analyze; it was deemed sufficient,
therefore, to simply state its solution in section 6.

We start with Figure 2, which displays the numerical results for
the Type-B induction solution. The four graphs there exhibit,
respectively, the profiles of Ty, py, uy and p; against x for
increasing values of t, upto the time beyond which the integration
routine was unsuccessful for a time step 10_6, thus signalling the
imminence of blowup. An examination of the T4— profile near blowup
reveals the birth of a boundary layer at x = 0. Additional
information is provided by Figure 3, where the function expl-
T4(0,t)] is graphed near blowup. The straight-line graph in the
figure has slope 1.4 (=Y), and a t—-intercept equal to the blowup

time t_,, allowing one to conclude that

(3.4) T1(0,t) ~ —nL¥(t-t)] + 0(1) as t » t..

Figure 4 displays time plots of the solution at x = 0, and shows
clearly that while T4(0,t) and py (O,t) become unbounded, g,(0,t)

does not. Therefore, p;(0,t) must have precisely the same leading-

order behavior as Tl(O,t), i.e.,

(3.5 Py (O,t) ~ —#nlt—t] + 0(1) as t > t_.



To summarize, the induction stage exhibits the classic logarithmic

singularity of spatially homogeneous thermal runaway [81].

4. Type-B Blowup 8Structure

Although numerics has elucidated the temporal character of the
blowup singularity, further analysis is needed to ascertain its
spatial structure. This will be done by examining separately the
boundary layer, whose emergence has already been noted, and the
region outside. First, it is convenient to introduce a new time

variable t via the expression

(4.1) T =t,t, t >oO.

Then, following simple manipulations, eagrs. (3.2a,b) transform into

(4.2a) dpy/3x - Y3duy/3ct = 0O,

(4.2b) ¥3u1/3x - 3p1/3t = (Y—l)apllat - ¥3T1/3t = Yexp(Tl),
where the dependent variables are now treated as functions of x and
t. The relevant boundary condition is the first of (2.2), re-
written as

(4.3) uy (0, 7) = O.

Elementary manipulations on (4.2a,b) and (4.3) yield the following

integral, which will prove to be of value later on:
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te

(4.4) 3(r) = 3, exp|] exp(T (0,t)rdt],
T

where 3(r) denotes the disturbance temperature gradient at x = 0,

and

{wls

35 it= initial value. i.e..

(4.5) o) = [aTytx,0078x] 000 Fp = Ftg-).

Recall, from (3.3b), that 3, vanishes for type I but is negative
for type B. Then (4.4) shows that 3 (7)) = O (rounded peak) for the
former and decreases monotonocally to —® (sharp peak approaching a

cusp) for the latter as v » 0O+,

4.1 The Boundary Layer
Turning now to the asymptotic analysis near blowup, eqns. (4.2a,b)

govern the region outside the boundary layer, where the outer limit

process
x > 0 and fixed, v *+ O

applies. The boundary layer, on the other hand, corresponds to the

inner limit process
s > 0 and fixed, v » 0O,
where s(x,tr) is the spatial coordinate in the boundary layer,

reflecting its self-similar structure. The shrinking nature of the

layer requires x to vanish under the inner limiting process, and



then a moment 's reflection suggests the definition

(4.6) s = x/t,

which assigns coequal importance to the x- and r-derivatives,
thereby providing the richest equations for the inner limit. (It
will transpire that this scaling does not quite cover the entire
boundary layer, but more about that later.) These equations,

obtained by transforming (4.2a,b) to the (s,tr) variables, are

{(4.7a) (s9/9s — Tr3/3¥3TILY¥Ty — (Y-1)py] = Yrexp(Ty),
(4.7b) (s3/3s — td/9tv)py + Youy/3s = Yrexp(Ty),
(4.7c) (s8/9s — rd/3vduy + (1/¥)dpy/9s = O.

It is convenient to isolate the temporal singularity from the

spatial structure, by setting

(4.8a) Ty = —2n(¥T) + fis,7),
(4.8b) Py = —2n(ByT) + g(s,T),
{4.8c) uy = his, ),

where the yet unknown constant By represents a weak influence of
the initial conditions on the self-similar boundary layer, and will
be determined in due course by matching. The structure functions
£, g and h are assumed to be o0(1) in the limit v » 0. Substitution

of (4.8) into (4.7) yields the structure equations




- — = af -
{4.%9a) sfg tf . + {y 1)hs = @ 1,
(4.9b) s(fg — gg) — Tlf, —g) — hg = O,
(4.9c) shg - cth, + (1/¥)g5 = 0.

The only boundary condition appropriate for the above set is the

wall condition

(4.10) h(0,t) = O.

In addition, since the initial data are smooth, the structure

functions and their s-—derivatives are required to be regular in s.

Consider the asymptotic expansions

(4.11) B~ og(0)B(5) + ox(0)P,(8) + ... for & = f, g, and h,

as v » 0. The gauge sequence {o,(7)} is not yet specified, but a
clue as to its identity is provided by the integral relation (4.4),
rewritten as
T
(4.12) fg(0,7) = I © -xp[—f {1/(¥t}exp{f(0,t)}dt]
te
in view of the scaling (4.6) and the prescription (4.8).

t the f-expansion in (4.11) allows the above relation to be reduced

further to the asymptotic form

(4.13) 0f17(0) + ... =
T
Fociexp[O(1) - {fl(O)IY}{Jt—lai(t) dat +...],

where

For small
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(4.14) A= (¥-1)/7.

Recall, from (4.5), that the constant 3p is nonzero for the Type-B
problem. Then, the assumption that f;°(0) is nonvanishing

(involving no loss of generality) leads to the conclusion

(4.15) aytt) =

if the two sides of (4.13) are to balance at leading order. With
oy determined, it can be shown that the expansions (4.11) proceed
in powers of A,

The boundary—-layer analysis can now be carried out, and as
hinted earlier, the layer is found to have a two—sublavyer
structure. It is convenient to refer to Figure 5 in which the
various spatial regimes near and beyond blowup are displayed
schematically. OR refers to the outer region and BL to the
boundary laver; the latter is subdivided further into an interior
subl ayer LI and an exterior sublayer LE' We shall first examine
the interior sublayer, show that it becomes nonuniform for large s,
determine the appropriate scaling and expansions for the exterior
sublayer, and demonstrate that the latter merges smoothly into the
outer region. Only one or two terms of the expansions in each

region will be computed; continuation to higher orders is

straightforward though increasingly complex algebraically.

4.1.1 The Interior Sublayer L;p

Substitution of (4.11) into (4.9) yields the leading—order




structure equations for the inner sublayer,

(4. 16a) sfy” — (AM1)fy + (¥F-1DDhy" = O,
(4.16b) s(fy°—-gy’) - Afy-gy) — hy’ = 0,
(4.16C) shy’ — My + (1/7)g;’ = O.

The boundary condition
(4.16d) hy(0) =0

comes from (4.10), and the solution is restricted additionally by the

requirement that it be regular. If gy and h; are eliminated from

(4.1ba—c), the result is the third-order equation

(4.17) [(sS-8)F,"1"" + AL(1-352)§,°1" - (s2-1/01%,""
+ (A1) (BA-B)sf, * + (A2-1) (2-M)F; = O
for f;. The points s=0 and s=1 are singular points of this

equation and the three linearly independent solutions have the

asymptotic bebhavior

i, s and sfns as s + 0, and

i, 1-s and '1_5|3(y—1)/2y as 5 » 1.

In general one can expect a one-parameter family of regular
solutions to exist, and numerical computations verify that such is

indeed the case. A convenient parameter is




(4.18) A, = £,(0).

With f4 known, h;’ can be eliminated from (4.16a,b) to obtain a
first—order differential equation for g, whose regular solution

turns out to be

T
(4.19a) gy = L1/ /-1, — [s*/ar-13] x4 coax,
0
and then, (4.16c) integrates to give
T
(4.19b) hy = gy /7N = £s™ 0 3f x7 gy eoax,

where regularity has been imposed again. Thus the full solution at
this order depends on the single parameter A;. Graphs of 4, g4
and hy for A; = 1 are drawn in Figure 6.

At this stage the solution (4.8) has the following expansions

in the interior sublayer:

(4.20a) Ty ~ —gn(¥o) + ™M s + ...,
(4.20b) py ~ —#n(Byo) + tgyts) + ...,
(4.20c) ug ~ (s + ... .

In order to determine the spatial extent of L; one needs the
asymptotic behavior of fy, g4 and hy for large s. This is easily

obtained from (4.17) and (4.1%), as

(4.21a) £, ~ —Aals 2TV 4 S~V gns + Bg)
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(4.21b) 9y ~ —Aals 2V-1I/Y o J(X-1)/Y 4 g-1/¥(n gne + B,)
9 9 g
+ Cgs—(Y+1)/Y + ...3,
(4.21c) hy ~ -Aats Y"1/ ¥ (p gng + B + € s71/7 & LLl0.

Here «, By and Cg are constants with values

o = 2.660, Bg = -0.236, Cg = 0.0737

obtained by integrating the 1 equation (4.17) numerically. The

remaining constants appearing above are given by

Ag = —2r-D -12/2r%), A, = (F+DAL/ -1,

g
2
An = 2A¥/(-1)%, By = AL/ (r-1) + (F+1)Bg/(r-1),

(4.22) By, = 2Bgr/(r-132 - y(3r-1)A /7 (r-1)3,
Cg = (2¥+1)C4/(2¥-2), Cp = -3¥C¢/(r-1),
- - _1)2
Dg = -3Cg¥5/(r-12,

The range of validity of the expansions (4.20) can now be determined.
For example, substitution of (4.21a) into (4.20a) suggests that the
latter becomes nonuniform when

A 2V-1)/Y - (1), i.e., s = O™,

where

(4.23) a = (¥-1)/72¥-1)



and the definition (4.14) of A has been invoked. Correspondingly,

x = 0¥/ 271y = 51y,

The smallness of x indicates that although one has reached the edge
of Ly, the outer region is still too far. The need for an exterior

sublayer is therefore apparent.

4.1.2 The Exterior Sublayer Lg
In this sublayer the appropriate variables are ¢ and v, with §

defined by

(4.24) § = B g = /¥ 271

The expressions (4.8) for Ty, p; and u; hold again, provided ¥, g9

and h are now treated as functions of ¢ and r. The structure

equations, obtained from (4.9) by transforming from s to §, are

(4.25a) (- gfe — tf + (- ¥ h, = ef-1,
(4.25b) (1-m €(fa—ge) — T(f ~gy) — oH he = 0,
(4.25c) (1-ghe — the + (1/NcH g = 0.

Matching requirements imposed by L;, obtained by substituting

(4.21) into (4.20) and then employing (4.24), are

(4.26a) f o~ Ay §2T1I/Y  g(28 gnoy,

(4.26b) g ~ -Ajx §2TT1I/Y 4 gty
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(4.26c)  h ~ —Ajx P ¢/ a (—p tne + eng) + B

+ 028, ag g > O.

Buided by Lhese th& g sclution is scught in the form
(4.27a) f ~ Fptg) + ...,

(4-27b) g b Go(g) + s .y

(4.27c) h ~ tHlgnt Hg(§) + Hi(&)1 + ... .

Substitution into (4.25) leads to the differential equations

(1-w) §F 5" = exp(Fqg)-1,
- Bo' = 0’

(1-) §Hg" ~ uHg = O,

(1- gHy " ~ pHy = Hg — (1/9 Gy,

whose solutions, subject to the matching requirements (4.26), are

(4.28a) Fo(§) = Bgig) = - gﬁ[1+alag(2¥—1)/¥3'
(4.28b) Ho(8) = —A el (r-1)/r22¢Y- 1/,
(4.28c)  Hy(8) = A ¢/ re2r-1)77%3¢8ne + Fo()3 - B 1.

Thus the LE-solution can be written as

(4.29a) Ty ~ —8n(¥t) + Fo(§) + ...,

(4.29c) u; ~ t [8nt Hp(8) + Hi($)1 + ... .
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One must consider the behavior of this solution for large § in
order to assess the spatial extent of the sublayer Lg- This can be
done, for example, by substituting the large—¢ behavior of (4.28a)

inta (4.2%a). The result is the expansion

Ty ~ —2r-1773enc?/ 2Dy — pnpjan + ...,
asﬁ-)l’,
which clearly becomes disordered when § = o ¥/ (2¥-1),
Correspondingly, x = 0(1), indicating that the &sdge of the boundary
layer has now been reached. The next step is to see if the

boundary layer merges smoothly with the region OR.

4.2 The Outer Region OR
In the outer region, where x and v are the proper variables, the

solution can be expanded as
(4.30) il ~ QIO(X’tE) + T §11(X) + 'R for !1 = Tl, pl and UI’

where the leading terms are the numerically obtained limiting
values at blowup and the higher-order terms can be computed from
(4.2a,b) under the outer limit process. It is a straightforward
matter to establish that a match of (4.30) with the Lg—-solution
(4.2%9a-c) requires the following asymptotic behavior of the outer

solution at blowup:

(4.31a) Ty ~ —{(2Y-1)/738nx - n(Aya?) + ...,




(4.31b)  py ~ (271 /7 8nx - tn(A 0By + ...,
(4.31c)  uy ~ —Aja x YTV [ror-1y 7v2300cr-1) 7 93 20

+ zn(Ala)]+Bh} + ...y as x 2+ 0.

A careful examination of the numerical solution does, indeed,
confirm this behavior. The constants Ai and By, the only ones yet
undetermined, can then be found by comparing the above expansions
with the numerical solution. The comparison is made at the "edge"
of the boundary layer, i.e., for (x,t) satisfying v << 1, ¥/ (27-1)
<{ x%x << 1. It should be emphasized that the structure of the
blowup singularity is influenced by the initial conditions only via
these constants; otherwise, the solution has a universal, self-

similar structure.

4.3 Summary
The near-blowup analysis is now complete, and can be summarized.

In the interior sublayer L; the expansions are

(4.32a) T~t+ @ li-gntre) + cMytsd) + L0131+ L.,
(4.32b) P~1+ 68 lt-gn(B o) + tPgy(s) + .. 1 + ...,
(4.32c) u~8leMhis) + .1+ L.,

where f,, gy and h; are defined by (4.17) and (4.19). 1In the

exterior sublayer, the solution is

(4.33a) T~1+ 68 l-tntro) +Fpte) + ...3 + ...,




(4.33c)  u ~ @ 10cH gnt Ho(e) + o Hy(e) + L. 3 + ...,
where Fo, Hy and H; are given by (4.28). In the outer region the

expansions take the form

(4.34a) Tal+ 8T otx,t) + 001 + ...,
(4.34b) pal+ 8 lipoix,ty) + 0O + ...,
(4.34c) u~ 8 tu i, + OG0T + ...,

where Tio» Pip and uyqg are the terminal values of the induction
solution, determined numerically.
The remaining variables g and Y can be computed, upto 0(9—1), by

appealing to the first equation of (3.2c) and (3.2d). The results

are

(4.35a) p~1+ 8 ltencr/By + D (g + LT+ L,

(4.35b) Y~ 1+ @8N tientb o) + o Lr-1g-reyr o+ LT+ Ll
in LI ’

(4.3b6a) p~1+ 6 lteny/By + Lll1 + L,

(4.36b) Y ~ 1 + (8B M En(byT) - Fo(§) + ...3 + ...

in Lg, and

(4.37a) Pl + 8Pt )T gln,ty) + O(DT + wuny

(4.37b) Yo 1+ (8T Ir-1/70potx ) -Tyglx,te)

+ b(l—x/a) + O()) + ... .
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in OR. The constant b; appearing in (4.35b) and (4.36b) is given

by

(4.38) by = explYb + Ye¢n¥ — (¥-1)£nB,;1.

Observe that the BlL-solutions (4.32), (4.33), (4.35) and (4.36&)
break down when -£2nt = 0(8), signalling the end of the induction
stage, and the onset of explosion. In contrast the OR-solutions,
(4.34) and (4.37), suffer no disordering and in fact, become

increasingly accurate as r » 0.
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5. The Type-B Explosion Stage
The nonuniformity just encountered decrees that further
evolution in the boundary layer occur on the new time scale o,

defined by
(5.1) r = e 90,

For o = 0(1) the limit @ > ® corresponds to a time interval of
exponential brevity; its role in the evolution of thermal
explosions was first recognized and exploited by Kassoy [81. The
two sublayers comprising the boundary layer must again be examined
in turn. In fact, we shall find that as the boundary layers
continue to shrink, an expanding void, or an intermediate region
(denoted by IR in Figure 5), is created between the sublayer Lp and

the outer region OR; this region begs a separate treatment.

5.1 The Interior Sublayer L;

The spatial coordinate in this region remains s, now written as

s = x/tv E e X,

thereby expressing explicitly the continuous shrinkage of the

region. In the (s,0) variables eqns. (2.1) transform into

(5.2a) el py + sp, + (pur_ = O,

(5.2b) pre”l u, + sugl + (1/0pg + puug = O,




- —-——

(5.2¢) pro~l T, + sT,1 - c(r-1)/r3167 ! py + sp,1

+ ulpT_ — ((r-1)/7p_1 = W,

(5.2d) PLa™Y Y, + sY_ 1 + upY, = -(1/8)W,
(5. 2e) p = oT,

where

(5.3) w= 61 pyexpr@(1-o-1/T)1.

The boundary condition (2.2) is rewritten as

(5. 4) uto,o = O.

At fixed s the solution must match with the induction zone as o >

0. To obtain the necessary conditions one applies the "explosion

limit" o fixed, & > ® to the Lj-solution (4.32), (4.35) and qgets

(5.5a) T ~1+0 - 81 gny + ... + 8LFg (=) + ...,

(5.5b) p ~ 140 - 81 gnB; + ... + Slgy(s) + ...1,

(5.5c) u ~ 8Chy(s) + ...1,

(5. 5d) P~ + 8! any/B + ...+ Blgy(s)—fy(s) + ...1,
(5. 5e) Y ~ 1-0/¢aY) + (08" lenb, + ...

+ AN lor-11g () -YF,(8)+ ..., as o > O.

Here,

(5.6) § = g1 70N,



where A was defined in (4.14) and b; in (4.38). These conditions
reveal that spatial variations in the explosion stage appear only
at the (exponentially small) 0(8) level, thereby suggesting that
the solution is spatially uniform to all algebraic orders in 8. In
other words, the structure of the interior sublayer consists of an
extremely weak chemico—acoustic field superimposed over a uniformly

exploding atmosphere. Accordingly one seeks expansions of the form

(S.7a) u ~ § uy(s,o) + ...,

{(S5.7b) g ~ 3plo38) + & $y(s,0) + ..., fOr ¢=7T, p, p, and Y,
with the understanding that the %, contain all terms of algebraic
orders. Substitution into (5.2) finds the %, satisfying the

standard equations of constant-volume thermal explosion [81, i.e.,

(5.8a) pg/30 = 0, pg = PoTgs

(5.8b) (177)pgaTg/ 30 = —BPu3Y/30 = Wy 3 poYoexplO(l-o-1/Ty) 1.

The solution, subject to the matching conditions (5.5), is

(5.9a) 3o ~ &g + @1 85y + ..., fOr 8 =T, p, ¥ and p,
where

(5.9b) Too = Pgo = (1-o 1, Yoo = (1+7¥B-Tg)/(¥B), Poo = 1,
(5.9c) Tor = -(-o Zen[ra-e2vyy], gy = tnty/Bp,

(5. 9d) Po1 = Toy + Ppy/(1-0), BY¥oy = [Eniby/¥)-Tpy].
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The structure functions %, satisfy, to leading order, the equations

(5. 10a) (s3/35-A) Py + Ppduy/as = 0,

(S_10h) b,ts3/3a—Nu, + (1/7)3,/3s = O,
(5.10c) (53/38-N) LpaT—{(¥-1)/¥3pyd = leolToz,
(5.10d) Pp(s3/3s~-N)Yy = — leol(ﬂToz),

(5.10e) Py — PoTy — ToPy = O,

where W, was defined in (5.8b). Replacement of T, and W, by their
leading—order values from (5.9), followed by the use of the trans-
formations

(5.11) u; = -1’2 4, s = st1-71/2,

reduces the set (5.10) to

(5. 12a) (83/38-M T, + (¥-1)230,/38 = Ty,
(5.12b) (£3/3&8-2) (T;—p,) ~ 2u,/3s = O,
(5. 12c) (53/35-M0y + (1/9)3py/3% = 0O,
(5. 12d) Py = (p;=T1)/Tgos

(5.12e) (83/35-N) Yy + (1/(BN3ITy = O.

Eqns. (5.12a-c) are identical to (4.1b6a-c) if Ty, py, Gl and 8 in
the former are identified, respectively, with f;, gy, hy and s in
the latter. Following the arguments of section 4.1.1, therefore,

one is led to the solution




(5.13a) T, = [A;(0) /A1, (S),
(5.13b) py = [A; (o) /A;1g, (S)
(5. 13c) u = -0 1/2 4; = -0 V2A, (/a3 (),

where A; is the constant introduced earlier in (4.18). The
amplitude function 31<o) is unknown at this stage, and will be
determined by matching with the exterior sublayer. So far we only
know its initial value as a result of matching with the induction

solution (4.32), i.e.,

(5.14) A;(0) = A4.

It is now a simple matter to solve (5.12d) for £y, and compute Y; by
integrating (5.12e) subject to the regularity requirement. The
resulting expressions are

(5.15a) Py = (1-0)[A; (o) /A,1Lg (5)—f4(5)1],

(5. 15b) Yy = [ (0)/(BA ILL(Y-1)/¥3gy (S)~F4(S) 1.

Both the spatially uniform and the spatially-varying components
of the expansions (5.7) are thus determined at leading orders,
although the latter involve 31(0) which is still to be found. It
is worth noting that the spatial structure of the solution is
sssantially the same ams it was at induction-stage blowup) the
scalings (5.11) simply reflect the temporal svolution of the
acoustic speed.

As in section 4.1.1, the Lj-solution breaks down for large s,
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the nonuniformity now occuring (see the expansion (4.21)) at

0ss2¥-1)/Y — n¢1). oOne is then led to the exterior sublayer.

2 Ths Extarior Ruhlavar L.

Here the proper variables are § and o where £ is now related to x

-~ -
and s via the expressions

and u was defined in (4.23). In the new variables the full equations

(2.1) read
(5.17a) ! p, + (1-wep, + @), = 0,

(5.17b) peB98 o7t u, + (1-mgud + (1/V)pge + puug = O,
(5.17c) pre”l T, + (-meT,d - cr-nsneT py 4 (- epgd
+ 7098 urer, - Cr-1)/73pg1 = W,

(5.17d) pre™l v, + (- ev,d + e79OM oy, = —(1/8)M,
(5.17e) p = pT,

where W retains the definition (5.3). The solution is subject to

the following matching conditions imposed by Lj:

(5.18a) T ~ Too + 671 [Ty - Pe(2¥-1V/¥y o
(5. 18b) P ~Tog + 81 [Ty + ppy/ -0y — Pgl2¥-10/7y o |
(5. 18c) u ~ —e 9r pe -1/ ¥ ya +

67! ta entt1-o)1/2¢3 + B3] + ...,

(5. 18d) p~t1+ o1 py o+,



—-3Z0-
(5.18e) Y ~ Yoo + (@AN " entb /) - Ty, +

P§(2¥—1)/Y] + ...y as § > O.

Here,

(5.19a) Pla) = of;(e) (1-0) (2V~1I/20)
with

(5.19b) P(O) = afy,

from (5.14). In obtaining the conditions (5.18) we have employed
the expansions (4.21) and the solution (5.13); the variables with
double subscripts are the spatially homogeneous functions appearing
in (9.9). It turns out that compliance with these conditions also
ensures temporal matching with the induction stage. The Lg—

solution is now sought in the form

(5.20a) T~Too + 61 Fits,00 + ...,

(5.20b) P~Togo + 61 pyle,o + .oy

(5.20c) u-~e @i (¢, + 67! Ui, + ...T,
(5.20d) Yu Yoo vt 1 V8,00 + ...,

(5.20e) Pt + 8t po el

Substitution into (5.17) shows that (S5.17a) is satisfied

identically to 0¢(~1). At 0(1), (5.17b) reduces to




(1-u) §30o/ 3§ — uig = O
whose solution subject to the matching requirement (5.18c)
(5.21) Ug = €(r-1)/r%30pgY-1)/7,
At 0~ ly, (5.17e) yields
(5.22) By = Ty + pgy/ 1-0),
while (5.17c) reduces to

(1- "2 + (1-weaTysee - (r-n/nfa-072

+ (1-w 83p,/3¢] = Yoo expL(1-0?¥,1,
and, in view of (5.22), simplifies further to

(5.23) (1- "2 + (1-w gaT /38 = ¥¥oq expl(1-0)2¥ 1.

is

Its solution, consistent with the matching condition (5.18a), is

(5.24) Ty = Tor - (-2 1 + -o2pet2¥-1I/Y],

With ¥, known, (5.22) defines p;. In order to determine ¥,

consider (5.17d) at 0(e~1); it yields

- -2 + (1-w g3V, /0



2'\1
= (—l/ﬁ)voo expl (1-0) T1]-
When linearly combined with (5.23) the above equation leads to
e ~Ne
8LTy + BYY,;1/38 = O.

The matching condition (5.18e) then provides the following expression

for Yy:
(5. 25) BYYy = fntby/¥) - T,.
It now remains to determine 51, and the function P(o) (or,

equivalently, 31(a)>. Both are obtainable from (5.17b) which, at

0(9-1), reads
(5.26) (1-m) §30,/3§ — iy = ~3Ug/30 — (1/7)3p,/36.

With U, and p, known (see (5.21), (5.22) and (5.24)), the

general solution of the above equation can be written as

(5.27) oy = C@r-0/re D/ - tr-137¥23 (oP) " g

+ (PN nLg 2TV Y s p1ap(1-0) 26 (21D /73 4],

where K(o) is the integration "constant". As ¢ > O, 31 has the

asymptotic behavior

(5.28) Uy ~ €@r-0/7ne VY gy 792 0Py ¢




+ €2r-1/72%Pang + K] + ...,

which must agree with the 0(e!) term in (5.18c). Matching the £n¢§

+
1

rme vimlde the differential eguation

LoP(o)]” = P

whose solution, subject to (5.1%9b), is

(5.29a) P = afy,

or, equivalently,

(5.29b) A, = A, (1-~ (271720

With P determined, matching of the f-independent terms in (5.28)

and (5.18c) yields K:

o
o
6
~r

K= (aAj /7L (1/2)n(1-0) ~— {¥2/(2¥—1)}Bhl,

where the constant By, was defined in eqn. (4.22). The Lg-
solution at the explosion stage is thus complete.

It is instructive to compare the solutions in the two sublayers.
In each the background field is that of a spatially homogeneous
thermal explosion, but the superimposed spatially-varying field is
quite different, both in amplitude and structure. 1In L; the

spatial component is exponentially small in amplitude but has a
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chemico—acoustic character; all disturbances to the background
homogeneous field are of the same size. 1In Lg the spatial
variations in T, Y and p are 0(0—1), while those in u and g are
exponentially small, i.e., the evolution is essentially due to
constant—-volume chemical amplification of a spatially-non-—
uniform field, with gasdynamics playing a very minor role.

As o increases, T and p increase and Y decreases, in both the
sublayers. Eventually, p and T peak when Yoo+ the leading term

in Y, vanishes. This happens at (see (5.9))
(5.31a) o= B¥/(1+8Y),

and the peak values are

(5.31b) T ~ 14+8Y, p ~ 1+87.

At the same time, the 0@ ) term ¢in T, say; see (3.20a), (5.24)
and (5.%9c)) develops a logarithmic singularity, indicating

breakdown of the solution and the end of the explosion stage.

5.3 The Outer Region OR

This region remains essentially stationary, and hence plays no
role during the explosion stage. For the sake of completeness, we
give below the asymptotic form of the outer solution as x » O3

these expressions are determined by combining (4.31) and (4.34):

(5.32a) T~1+ 61 [-c@r-i/nenx - enajan] + ...,




(S5.32b) p~1+ 61 [-c@r-1/nenx - gntageBy ] + ...,
(5.32c) u~ 6t Aja x D a1y /2 - (-1 713 a0k

- #n(A 0l - B] + ...

Similar expressions can be written for o and Y. The important
point to note is that this solution is unmatchable with that in Lg;
for example, to leading order, T is 1 in OR and 1/(1-o0) in Lg. The
reason is the emergence of the intermediate region IR in Fiqure 5,
created by the receding boundary layer. In this region T must
vary, at leading order, from the outer value 1 to the inner value

17¢1—-a).
S.4 Tha Intermadiate Region IR
This region, because of its passive character, will only be

described very briefly. It is governed by the variables o and X,

where X is defined by
(5.33) x = e X,

Matching with the neighbaring regions is carried out at fixed o, by

setting
X = -1 gnx
as one approaches the outer region, and

X = o(1=w) - o} Ing,



as the boundary layer is approached. Therefore the range of X is

(S.34) 0< X < oll—m)3

recall that u was defined in (4.23). From (5.20) one can easily

conclude that leading—order matching with Lg requires

{5.35a) T~ 1/¢t—-0) + ... 4, as X * o(1l—-w),

with analogous expressions for p and Y, while

(5.35b) Pa~l, un~e /Y iy 1y/r%0,a0.

Therefore the solution is sought in the form

(5.36a) 3~8 + ..., for =T, p, P and Y,
and
(5.36b) U~ e XY=y 0 o .

In the (X,0) variables the full equations (2.1) read

Py — (upry e 80"X) = o,

plug - uuy e @0 X] - (1/r1py e”9X) =0,

o[ty - uTy 78 X] — ((r-1y/73 [Po — upx

p[¥y - uvy 790X = —1/prw,

-8(-X)] = u,




PT,

o
i

where W retains the definition (5.3). Clearly, the solution is
stationary, i.e., 1ndependent of o to all alysbiaic ofrd&irS.
Specifically, the reaction term W is exponentially small since one
expects T < 1/(1-0). The leading-order terms can then be
determined simply by appealing to the matching conditions (5.35),

and one finds that

(5.37a) T = 1/01-C1-w " 1x2,

with analogous expressions for p and Y, while

(5.37b) P2 =1, u® = Cr-1/7723A & (1-w 7 1x.

It is a simple matter to check that the above solution also matches
with the outer expansions (3.32) as X > O.

The analysis of the Type-B explosion is thus complete.

6. The Type-I Explosion
In this section details are largely omitted and emphasis is on
the results, since the treatment follows closely the Type-B

analysis just concluded.

6.1 The Induction Stage
Figures 7(a-d) display the numerical solution of the induction

problem. The graphs are self-explanatory. SGimilarity with Figures
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2(a—-d) is obvious, but two points of contrast are noteworthy.
First, the temperature profile now has a rounded peak. Second, the
boundary layer is thicker; this can be seen more clearly in Figure 8,
where T;(x,t)/T;(0,t) is plotted at the last successful time step
for each of the two cases.
The boundary layer retains the form (4.8) and a two—-sublayer

structure emerges once again. The expansions are

(6.1a) T~1+ 6 -tnro - canc Cr-n/7030; +

v (-Ags? + Axr + L]+ ...,
(6. 1b) p~14+ 0_1[—£n(91t) - Tentr {(Y+1)/03A; +

v [-Ags? + LD/ -1D3A, + A/YT + L]+ L.,
(6.1c) u~ 8 eene -2a;8/71 +

T [2A5/(¥-1) = Ag/¥1s + ... ] + ...

in Ly, and

(6.2a) T~1+6[-tntro - tnasage? + L] + .0,
(6.2b) p~1+@l[-tnByo - tna+ae? + o] + L.,
(6.2c) u ~ @1 e/ 2enc —27005¢3 + 12 (—(2/11A,¢ En(1+A €D

+ {205/ (¥-1) — A;/73¢] + ...] + e,
in Lg. The coefficients Ay, A5 and B; are to be determined by
matching with the outer solution as before. The spatial coordinate

€ in Lg is defined by

(6.3) ¢ = x/el/2,
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implying that the boundary layer is now D(t1/2) thick, and hence
thicker than the o(c¥/ (271, Type-B layer. The finding of Figure
8 is thus confirmed.

It turns out further that the iLg—solution is unifurmiy valid aii
the way to ¢ = 0, so that the interior sublayer is, in fact,
superfluous.

For smooth merging with the boundary layer the outer,

numerically computed solution is required to have the asymptotic

form

(6. 4a) T~1+ 61 [-28nx - gnrA) + L..1 + ..,
(6.4b) p~1+ 681 [-20nx - en(ABy) + cou] + Lo,
(6. 4c) u~ 671 [-4(A /¥ xtnx + {~2(A,/7)2nA,

+ 2A2/()’—1) - AIIY}x + ..a.] + ..., as x > O.

This behavior was confirmed, and the constants A;, A; and B,
computed, by comparing the numerical solution with the above
expansions. The remaining variables p; and Y; can be determined
as before, by appealing to the first member of (3.2c), and

(3.2d).

6.2 The Explosion Stage

The analysis proceeds as in section 5.2. The appropriate
coordinates are o and ¢(, and the requirement of matching with L,
is replaced by the condition of regularity at ¢ = 0. The solution

turns out to be




(6.3a)

(6.5b)

(6.5c)

(6.5d)

(6. 5e)

Too + @} [Toi-(1-0"Zent1+a ¢ ] + ...,
Too + @1 [Toi-t1-002enc1+a;¢2d4pp 7 C1-00 ] + -..,
e 99/2 [T ¢ostrii-or3] + ...
1 + 9-1 p01 + LI BN
-1
Yoo + (@811 [entb /s -Ty,

+(1-0) 2ent1+A ¢% ] + ...,

where the constant by appearing in (6.5e) was defined in (4.38).

The doubly subscripted gquantities correspond to the spatially

homogeneous explosion, and were introduced in (5.9). The explosion

stage peaks just as it did for Type-B, and the remarks at the end

of section 5.2 remain valid. Finally, the IR-analysis of section

5.4 carries over, with obvious modifications.
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7. Concluding Remarks

The spatial structure and temporal evolution of a localized
thermal explosion in a confined gas have been described
mathematically. Localization, rather than a enatially uniform
explosion, octcurs as a result of system nonhomogeneities, here
maodelled by a slightly nonuniform initial temperature. Attention
is confined to what may be called the fast-reaction limit,
characterized by the initial induction time of the reaction being
comparable to the initial acoustic time across the vessel, so that
diffusion plays no role. This limit can be achieved if the initial
temperature of the unreacted gas has been raised to a sufficiently
high level, perhaps by the passage of a strong shock. By contrast,
the slow-reaction limit would correspond to the induction time and
the conduction time being of the same order. The latter problem
was the subject of Poland and Kassoy’'s investigation [4].

The explosion is shown to develop in two distinct stages. The
first stage is induction, characterized by small perturbations
about a spatially uniform state, where the primary interaction is
between linearized acoustics and weak but nonlinear chemical
heating. Chemical amplification leads to localized thermal
runaway, or blowup of the perturbations, at a time and location
determined by the initial and boundary conditions. The spatial
structure at blowup is self-similar, differing slightly depending
upon whether the runaway site is at the boundary or in the interior
of the domain.

Induction is followed by explosion, characterized by 0(1)
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variations in the state of the gas. The characteristic chemical
time plunges dramatically. The acoustic time drops as well, but

not nearly in the same proportion, so that explosion is dominated

by chemical heating. There is no time for expansion, with the
result that changes in the velocity and density fields are
negligible. Thus the gas explodes locally at essentially constant-
volume conditions, with little change in the spatial structure that
it inherited at runaway. (Analysis in the Appendix shows that if
thermal expansion is admitted, the corresponding spatial structure
is necessarily singular.) The explosion stage ends when temperature
and pressure withiﬁ the explosion have peaked, the final values
being exactly the same, to leading order, as in the spatially
homogeneous case. The subsequent expansion of the hot, highly
compressed gas, and the eventual development of a blast wave, are

currently under study.
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Appendix

The setup (4.8), employed in the text for analyzing the spatial
structure of blowup, is based on the numerical observation that
both Ty and p; exhibit identical, —£nt behavior as v » O.
This observation, found to hold for all the numerical runs
undertaken, implies that blowup is a constant-volume process, since
density perturbation py = Py — Ty remains bounded.

Let us now consider the possibility that for some initial
conditions, blowup lies partway between a constant—volume and a
constant-pressure process, and ask whether a self-similar structure

consistent with this notion exists. Accordingly, we replace (4.8)

by

(A.1a) Ty ~ —8nt + fo(s) + ...,
(A.1b) Py ~ —AfnT + gg(s) + ...,
(A.1c) ug ~ hgi(s) + ...,

where

0 < A< 1.

The case A = 0 corresponds to a constant-pressure situation, and
A =1 to the constant-volume case already discussed. Substitution
into (4.7), followed by some rearrangement, yields the leading-

order structure equations



.y -

(A.2a) s(1-52)f5° + [1-82-L(r-1)/73A1 = (1-¥sDrexp 4,
(A.2b) (1-s2)1gy" = sCA-Yexp g1,
(A. 2c) Y(1-s2)hy’ = vexp fg — A.

The transformation

(A.3) fo = —£nF

reduces (A.2a) to the linear equation

(A.4) s(1-s2)F° - [1-s2-{(¥-1)/¥INIF = 1-ra2,

Once F is known, f5, gg and hy can be computed sequentially from
(A.3) and (A.2b,c).

Equation (A.4) has singular points at s = 0 and 1. It can be
shown that in general integration can remove at most one
singularity, thereby yielding solutions which are singular
either at O or at 1. Such solutions can evolve only from very
special, singular initial conditions, and are therefore
unacceptable if the initial data are smooth. The only regular
solution is the constant

F=12,
which requires
N=1,

corresponding to the constant-volume blowup already discussed.
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Figure 1

A scematic of the temperature profiles for the Type-B

peaked) and the Type-1 (round-peaked) explosion.
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Figure 2(a)

Type—-B induction-stage profiles for (a) T4, (b) py, (c) uy; and
(d) py. The profiles are plotted at (i) t=0, (ii) t=0.2,
tiii) t=0.4, (iv) £=0.43, (v) t=0.442, (vi) t=0.44625. Estimate

of blowup time is t, = 0.446890.
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Plot of exp[-T4(0,t)] for Type-B problem.
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Figure 4

Type—-B plots of T4(0,t), Py (O,t) and py(0,t).
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Figure 5

A schematic of the spatial zones at and beyond blowup.
BL: Boundary Layer, Ly: Interior Sublayer, Lg: Exterior Sublayer,
OR: Outer Region, IR: Intermediate Region. Not to scale (The t-

scale is cosiderably stretched).
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i = 1.
Profiles of structure functions f4, g; and hy for ,(0)



-56-

o
HIHH]PH]H

TEMPERATURE
[T

T H1RE

n
Hl]HlHIH“IHHIh

lllllllll]lIlLJllllllllllLJl 1M|
.8

-2 .4 .6
X-RAXIS

o]
COTT

Figure 7(a)

Type-1 induction-stage profiles for (a) Ty, (b) py, (c) uy and

(d) py. The profiles are plotted at (i) t=0, (ii) £=0.2,
(iii) t=0.4, (iv) t=0.422, (v) t=0.432, (v1) t=0.435873.

Estimate of blowup time is te = 0.435880.
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Plots of T4(x,t)/T;(0,t) at the last integration step for

(a) Type B, and (b)) Type 1.
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