The dynamics of ignition between a contact surface and a shock wave is investigated using a
one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and
high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing
and contrasting the solutions with those of the ignition process between a piston and a shock,
considered previously. The large activation energy asymptotic solutions are found to be qualitatively
different from the piston driven shock case, in that thermal runaway first occurs ahead of
the contact surface, and both forward and backward moving reaction waves emerge. These waves
take the form of quasi-steady weak detonations that may later transition into strong detonation
waves. For the finite activation energies considered in the numerical simulations, the results are
qualitatively different to the asymptotic predictions in that no backward weak detonation wave
forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance
of the contact surface. The above conclusions are relevant to gas phase equation of state models.
However, when a large polytropic index more representative of condensed phase explosives is used,
the large activation energy asymptotic and finite activation energy numerical results are found to
be in quantitative agreement