1,018 research outputs found

    Towards a Molecular Inventory of Protostellar Discs

    Full text link
    The chemical environment in circumstellar discs is a unique diagnostic of the thermal, physical and chemical environment. In this paper we examine the structure of star formation regions giving rise to low mass stars, and the chemical environment inside them, and the circumstellar discs around the developing stars.Comment: 9 page PDF, 550 kbyte

    Transmission measurement at 10.6 microns of Te2As3Se5 rib-waveguides on As2S3 substrate

    Full text link
    The feasibility of chalcogenide rib waveguides working at lambda = 10.6 microns has been demonstrated. The waveguides comprised a several microns thick Te2As3Se5 film deposited by thermal evaporation on a polished As2S3 glass substrate and further etched by physical etching in Ar or CF4/O2 atmosphere. Output images at 10.6 microns and some propagation losses roughly estimated at 10dB/cm proved that the obtained structures behaved as channel waveguides with a good lateral confinement of the light. The work opens the doors to the realisation of components able to work in the mid and thermal infrared up to 20 microns and even more.Comment: The following article appeared in Vigreux-Bercovici et al., Appl. Phys. Lett. 90, 011110 (2007) and may be found at http://link.aip.org/link/?apl/90/01111

    Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e

    Get PDF
    [Abridged] The aim of this work is to search for an absorption signal from exospheric sodium (Na) and singly ionized calcium (Ca+^+) in the optical transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although the current best-fitting models to the planet mass and radius require a possible atmospheric component, uncertainties in the radius exist, making it possible that 55 Cancri e could be a hot rocky planet without an atmosphere. High resolution (R\sim110000) time-series spectra of five transits of 55 Cancri e, obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6m & HARPS-N/TNG) were analysed. Targeting the sodium D lines and the calcium H and K lines, the potential planet exospheric signal was filtered out from the much stronger stellar and telluric signals, making use of the change of the radial component of the orbital velocity of the planet over the transit from -57 to +57 km/sec. Combining all five transit data sets, we detect a signal potentially associated with sodium in the planet exosphere at a statistical significance level of 3σ\sigma. Combining the four HARPS transits that cover the calcium H and K lines, we also find a potential signal from ionized calcium (4.1 σ\sigma). Interestingly, this latter signal originates from just one of the transit measurements - with a 4.9σ\sigma detection at this epoch. Unfortunately, due to the low significance of the measured sodium signal and the potentially variable Ca+^+ signal, we estimate the p-values of these signals to be too high (corresponding to <4σ\sigma) to claim unambiguous exospheric detections. By comparing the observed signals with artificial signals injected early in the analysis, the absorption by Na and Ca+^+ are estimated to be at a level of approximately 2.3×103\times 10^{-3} and 7.0×102\times 10^{-2} respectively, relative to the stellar spectrum.Comment: 15 pages, 8 figures, submission updated after English language editing, submission updated to correct a mistaken cross-reference noticed in A&A proo

    CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star

    Get PDF
    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (m_V = 16) candidate revealed an eclipsing binary composed of a late F-type primary (T_eff = 6090 +/- 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 +/- 0.011 M_Sun, and a radius of 0.104 +0.026/-0.006 R_Sun, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5%-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models.Comment: Accepted for publication in Astronomy & Astrophysics, 8 pages, 10 figure

    The molecular disk surrounding the protostellar binary L1551 IRS5

    Get PDF
    The inner three arcminutes surrounding the Class 0/1 binary protostar L1551 IRS5 have been observed using the J=1→0 transitions of the HCO+, H13CO+, 12CO and 13CO molecular species. Since the line core of HCO+ is self reversed over a substantial part of our map, observations of isotopomers such as H13CO+ are required in order to estimate the mass of the molecular gas in the immediate vicinity of IRS5. Our observations demonstrate the presence of a large ( ~ 7000 AU radius) dense, possibly rotating, molecular disk with a mass of a few M⊙ oriented perpendicular to the major axis of an extended molecular outflow. The disk is surrounded by an envelope with a radius of ~ 10 000 AU that contains two massive (each ~ 1 M⊙) clumps. One of these features appears to be kinematically disconnected from both the disk and the molecular outflow

    TOI-431/HIP 26013: A super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet

    Get PDF
    We present the bright (Vmag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 \ub1 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431 b is\ua0a\ua0super-Earth with\ua0a\ua0period of 0.49 d,\ua0a\ua0radius of 1.28 \ub1 0.04 R,\ua0a\ua0mass of 3.07 \ub1 0.35 M, and\ua0a\ua0density of 8.0 \ub1 1.0 g cm-3; TOI-431 d is\ua0a\ua0sub-Neptune with\ua0a\ua0period of 12.46 d,\ua0a\ua0radius of 3.29 \ub1 0.09 R,\ua0a\ua0mass of 9.90+1.53-1.49 M, and\ua0a\ua0density of 1.36 \ub1 0.25 g cm-3. We find\ua0a\ua0third planet, TOI-431 c,\ua0in\ua0the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit\ua0in\ua0the TESS light curves. It has an Msin i of 2.83+0.41-0.34 M, and\ua0a\ua0period of 4.85 d. TOI-431 d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431 b may be\ua0a\ua0stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431 b is\ua0a\ua0prime TESS discovery for the study of rocky planet phase curves

    Incidence of debris discs around FGK stars in the solar neighbourhood

    Get PDF
    Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system's counterparts are the asteroid and Edgeworth-Kuiper belts. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighbourhood. The full sample of 177 FGK stars with d<20 pc proposed for the DUNES survey is presented. Herschel/PACS observations at 100 and 160 micron complemented with data at 70 micron, and at 250, 350 and 500 micron SPIRE photometry, were obtained. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the DEBRIS consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analysed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. The subsample of 105 stars with d<15 pc containing 23 F, 33 G and 49 K stars, is complete for F stars, almost complete for G stars and contains a substantial number of K stars to draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type 0.26 (6 objects with excesses out of 23 F stars), 0.21 (7 out of 33 G stars) and 0.20 (10 out of 49 K stars), the fraction for all three spectral types together being 0.22 (23 out of 105 stars). Uncertainties corresponding to a 95% confidence level are given in the text for all these numbers. The medians of the upper limits of L_dust/L_* for each spectral type are 7.8E-7 (F), 1.4E-6 (G) and 2.2E-6 (K); the lowest values being around 4.0E-7. The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.Comment: 31 pages, 15 figures, 10 tables, 2 appendice

    Searching for signs of triggered star formation toward IC 1848

    Get PDF
    We have carried out an in-depth study of three bright-rimmed clouds SFO 11, SFO 11NE and SFO 11E associated with the HII region IC 1848, using observations carried out at the James Clerk Maxwell Telescope (JCMT) and the Nordic Optical Telescope (NOT), plus archival data from IRAS, 2MASS and the NVSS. We show that the overall morphology of the clouds is reasonably consistent with that of radiative-driven implosion (RDI) models developed to predict the evolution of cometary globules. There is evidence for a photoevaporated flow from the surface of each cloud and, based upon the morphology and pressure balance of the clouds, it is possible that D-critical ionisation fronts are propagating into the molecular gas. The primary O star responsible for ionising the surfaces of the clouds is the 06V star HD 17505. Each cloud is associated with either recent or ongoing star formation: we have detected 8 sub-mm cores which possess the hallmarks of protostellar cores and identify YSO candidates from 2MASS data. We infer the past and future evolution of the clouds and demonstrate via a simple pressure-based argument that the UV illumination may have induced the collapse of the dense molecular cores found at the head of SFO 11 and SFO 11 E

    Kepler423b: a half-Jupiter mass planet transiting a very old solar-like star

    Get PDF
    We report the spectroscopic confirmation of the Kepler object of interest KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star KOI-183 is a G4 dwarf with M=0.85±0.04M_\star=0.85\pm0.04 M_\rm{Sun}, R=0.95±0.04R_\star=0.95\pm0.04 R_\rm{Sun}, Teff=5560±80T_\mathrm{eff}=5560\pm80 K, [M/H]=0.10±0.05[M/H]=-0.10\pm0.05 dex, and with an age of 11±211\pm2 Gyr. The planet KOI-183b has a mass of Mp=0.595±0.081M_\mathrm{p}=0.595\pm0.081 MJup_\mathrm{Jup} and a radius of Rp=1.192±0.052R_\mathrm{p}=1.192\pm0.052 RJup_\mathrm{Jup}, yielding a planetary bulk density of ρp=0.459±0.083\rho_\mathrm{p}=0.459\pm0.083 g/cm3^{3}. The radius of KOI-183b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2-σ\sigma confidence level (ΔFec=14.2±6.6\Delta F_{\mathrm{ec}}=14.2\pm6.6 ppm) and found that the orbit might have a small non-zero eccentricity of e=0.0190.014+0.028e=0.019^{+0.028}_{-0.014}. With a Bond albedo of AB=0.037±0.019A_\mathrm{B}=0.037\pm0.019, KOI-183b is one of the gas-giant planets with the lowest albedo known so far.Comment: 13 pages, 13 figures, 5 tables. Accepted for publication in A&A. Planet designation changed from KOI-183b to Kepler-423
    corecore