348 research outputs found

    Upstream activation element of the PH03 gene encoding for thiamine-repressible acid phosphatase in Saccharomyces cerevisiae

    Get PDF
    AbstractThe PH03 gene of Saccharomyces cerevisiae encodes thiamine-repressible acid phosphatase and requires the positively acting regulatory protein TH12 for its expression. Deletion analysis of the 5′-flanking region of PH03 gene revealed that an activating region located at nucleotide position −234 to −215 relative to the translation initiation codon is required for the expression and sensitivity to thiamine. A chemically synthesized DNA fragment covering −234 to −215 showed a significant level of expression when inserted in front of the PH03 promoter lacking the activating region. Electrophoretic mobility shift assay demonstrated the presence of proteins that bound to the above DNA fragment in the nuclear extract from cells grown in thiamine-free medium. These findings suggested that this region between −234 and −215 acts as an upstream activation element of the PH03 gene that can interact with regulatory proteins

    6β-Chloro-5α-hydr­oxy-20-oxopregnan-3β-yl acetate

    Get PDF
    The title steroid, C23H35ClO4, is a pregnane derivative prepared by ring opening of the corresponding 5α,6α-ep­oxy steroid with BiCl3. There are two symmetry-independent mol­ecules in the asymmetric unit that show no significant differences concerning bond lengths and angles. The conformation of the six-membered rings in both mol­ecules is close to a chair form, while the five-membered ring adopts an envelope conformation. All rings in both mol­ecules are trans-fused. The mol­ecules are held together by an extensive O—H⋯O hydrogen-bonding network

    Optically tunable fiber grating transmission filters

    Get PDF
    We propose and demonstrate single- and multiple-passband fiber grating transmission filters that are remotely tunable by exploitation of the optical pump-induced thermal effects in Er Yb-codoped fiber sections. A repeatable, wavelength-independent induced phase shift of 0.1p mW is obtained without hysteresis and anisotropic effects. A transmission extinction ratio of .23 dB with a 3-mW change in pump power is achieved

    Comprehensive assessment of metabolic syndrome among rural Bangladeshi women

    Get PDF
    Background: Metabolic syndrome (MS), defined as a constellation of cardiovascular disease (CVD) risk factors, is one of the fastest growing public health burdens in the Asia-Pacific region. This trend is despite the fact that people in this region are no more overweight than Europeans and Americans. Unfortunately, in South Asia, MS screening has only been performed in a few countries other than Bangladesh. Therefore the present study is designed to conduct a comprehensive screening of MS in Bangladeshi rural women, which includes estimation of prevalence and assessment of risk factor. Methods: A total of 1535 rural Bangladesh women aged ≥ 15 years were studied using a population based crosssectional survey. The prevalence of MS was estimated using NCEP ATP III, modified NCEP ATP III and IDF criteria. Results: The prevalence rates of MS were 25.60 % (NCEP ATP III), 36.68 % (modified NCEP ATP III), and 19.80 % (IDF), as revealed by the present study. Furthermore, based on the NCEP ATP III criteria, 11.60 % of the subjects were found to have excess waist circumference; 29.12 % had elevated blood pressure, 30.42 % had elevated fasting plasma glucose level, 85.47 % had low HDL values and 26.91 % had increased triglyceride values. Low plasma HDL level was found to be the most common abnormality in the target population and elevated waist circumference was the least frequent component. Conclusions: The present study reveals a high prevalence of MS and its associated risk factors in rural Bangladeshi women. These findings are important in that they provide insights that will be helpful in formulating effective public health policy, notably the development of future health prevention strategies in Bangladesh

    Quantitative Analysis of Protein Phosphorylations and Interactions by Multi-Colour IP-FCM as an Input for Kinetic Modelling of Signalling Networks

    Get PDF
    BACKGROUND: To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success. METHODOLOGY/PRINCIPAL FINDINGS: We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally. CONCLUSIONS/SIGNIFICANCE: The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network

    Cellular Basis of Tissue Regeneration by Omentum

    Get PDF
    The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells
    corecore