21 research outputs found
LIN-44/Wnt Directs Dendrite Outgrowth through LIN-17/Frizzled in C. elegans Neurons
Nervous system function requires proper development of two functional and morphological domains of neurons, axons and dendrites. Although both these domains are equally important for signal transmission, our understanding of dendrite development remains relatively poor. Here, we show that in C. elegans the Wnt ligand, LIN-44, and its Frizzled receptor, LIN-17, regulate dendrite development of the PQR oxygen sensory neuron. In lin-44 and lin-17 mutants, PQR dendrites fail to form, display stunted growth, or are misrouted. Manipulation of temporal and spatial expression of LIN-44, combined with cell-ablation experiments, indicates that this molecule is patterned during embryogenesis and acts as an attractive cue to define the site from which the dendrite emerges. Genetic interaction between lin-44 and lin-17 suggests that the LIN-44 signal is transmitted through the LIN-17 receptor, which acts cell autonomously in PQR. Furthermore, we provide evidence that LIN-17 interacts with another Wnt molecule, EGL-20, and functions in parallel to MIG-1/Frizzled in this process. Taken together, our results reveal a crucial role for Wnt and Frizzled molecules in regulating dendrite development in vivo
Wnt signals and Frizzled activity orient anterior-posterior axon outgrowth in C. elegans
Secreted proteins of the Wnt family affect axon guidance, asymmetric cell division, and cell fate. We show here that C. elegans Wnts acting through Frizzled receptors can shape axon and dendrite trajectories by reversing the anterior-posterior polarity of neurons. In lin-44/Wnt and lin-17/Frizzled mutants, the polarity of the PLM mechanosensory neuron is reversed along the body axis: the long PLM process, PLM growth cone, and synapses are posterior to its cell body instead of anterior. Similarly, the polarity of the ALM mechanosensory neuron is reversed in cwn-1 egl-20 Wnt double mutants, suggesting that different Wnt signals regulate neuronal polarity at different anterior-posterior positions. LIN-17 protein is asymmetrically localized to the posterior process of PLM in a lin-44-dependent manner, indicating that Wnt signaling redistributes LIN-17 in PLM. In this context, Wnts appear to function not as instructive growth cone attractants or repellents, but as organizers of neuronal polarity
Celsr3 is required in motor neurons to steer their axons in the hindlimb
International audienceThe cadherin Celsr3 regulates the directional growth and targeting of axons in the CNS, but whether it acts in collaboration with or in parallel to other guidance cues is unknown. Furthermore, the function of Celsr3 in the peripheral nervous system is still largely unexplored. Here we show that Celsr3 mediates pathfinding of motor axons innervating the hindlimb. In mice, Celsr3-deficient axons of the peroneal nerve segregate from those of the tibial nerve but fail to extend dorsally, and they stall near the branch point. Mutant axons respond to repulsive ephrinA-EphA forward signaling and glial cell-derived neurotrophic factor (GDNF). However, they are insensitive to attractive EphA-ephrinA reverse signaling. In transfected cells, Celsr3 immunoprecipitates with ephrinA2, ephrinA5, Ret, GDNF family receptor α1 (GFRα1) and Frizzled3 (Fzd3). The function of Celsr3 is Fzd3 dependent but Vangl2 independent. Our results provide evidence that the Celsr3-Fzd3 pathway interacts with EphA-ephrinA reverse signaling to guide motor axons in the hindlimb