97 research outputs found
Virulence and Pathogen Multiplication: A Serial Passage Experiment in the Hypervirulent Bacterial Insect-Pathogen Xenorhabdus nematophila
The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict
An acid-stable laccase from sclerotium rolfsii with potential for wool dye decolourization
The plant pathogen basidiomycete S. rolfsii secretes two laccases (SRL1 and SRL2) with molecular weights of 55 and 86 kDa, respectively.
Laccase production was shown to be inducible by the addition of 2,5-xylidine to the cultural media. After treatment with a combination
of chitinase and -1,3-glucanase, two different laccases were isolated from the sclerotia depending on the stage of sclerotia development.
The more prominent laccase, SRL1, was purified and found to decolourize the industrially important wool azo dye Diamond Black PV
200 without the addition of redox mediators. The enzyme (pI 5.2) was active in the acidic pH range, showing an optimal activity at pH
2.4, with ABTS as substrate. The optimum temperature for activity was determined to be 62 ◦C. Enzyme stability studies revealed that
SRL1 was notably stable at 18 ◦C and pH 4.5, retaining almost full activity after a week. Oxidation of tyrosine was not detectable under
the reaction conditions but the enzyme did oxidize a variety of the usual laccase substrates. SRL1 was strongly inhibited by sodium azide
and fluoride. Dye solutions decolourized with the immobilized laccase were successfully used for redyeing.(undefined
Bioinformatic Analysis Reveals High Diversity of Bacterial Genes for Laccase-Like Enzymes
Fungal laccases have been used in various fields ranging from processes in wood and paper industries to environmental applications. Although a few bacterial laccases have been characterized in recent years, prokaryotes have largely been neglected as a source of novel enzymes, in part due to the lack of knowledge about the diversity and distribution of laccases within Bacteria. In this work genes for laccase-like enzymes were searched for in over 2,200 complete and draft bacterial genomes and four metagenomic datasets, using the custom profile Hidden Markov Models for two- and three- domain laccases. More than 1,200 putative genes for laccase-like enzymes were retrieved from chromosomes and plasmids of diverse bacteria. In 76% of the genes, signal peptides were predicted, indicating that these bacterial laccases may be exported from the cytoplasm, which contrasts with the current belief. Moreover, several examples of putatively horizontally transferred bacterial laccase genes were described. Many metagenomic sequences encoding fragments of laccase-like enzymes could not be phylogenetically assigned, indicating considerable novelty. Laccase-like genes were also found in anaerobic bacteria, autotrophs and alkaliphiles, thus opening new hypotheses regarding their ecological functions. Bacteria identified as carrying laccase genes represent potential sources for future biotechnological applications
Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz
Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level
The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes
Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points
Search for signatures of sterile neutrinos with Double Chooz
We present a search for signatures of neutrino mixing of electron
anti-neutrinos with additional hypothetical sterile neutrino flavors using the
Double Chooz experiment. The search is based on data from 5 years of operation
of Double Chooz, including 2 years in the two-detector configuration. The
analysis is based on a profile likelihood, i.e.\ comparing the data to the
model prediction of disappearance in a data-to-data comparison of the two
respective detectors. The analysis is optimized for a model of three active and
one sterile neutrino. It is sensitive in the typical mass range eV eV for
mixing angles down to . No significant
disappearance additionally to the conventional disappearance related to
is observed and correspondingly exclusion bounds on the sterile
mixing parameter as function of are
obtained.Comment: accepted for publication by EPJ
Reactor rate modulation oscillation analysis with two detectors in Double Chooz
A θ13 oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of θ13 and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the ν¯ e interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and 9Li decays. The background-model-independent determination of the mixing angle yields sin2(2θ13) = 0.094 ± 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on θ13 to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation. [Figure not available: see fulltext.
- …