651 research outputs found

    Anomalous population of 10^{10}He states in reactions with 11^{11}Li

    Full text link
    Structure with the lowest energy observed in the 10^{10}He spectrum populated in the proton knockout reaction with 11^{11}Li beam has a peak at 1.2−1.51.2-1.5 MeV. This peak is usually interpreted as a resonant 0+0^+ ground state of 10^{10}He. Our theoretical calculations indicate that this peak is likely to be a pileup of 1−1^-, 0+0^+, and 2+2^+ excitations with very similar shapes. %We predict a very specific nature of the 1−1^- excitation in 10^{10}He. Moreover, the ``soft'' 1−1^- excitation appears to be the lowest one in energy. Such an anomalous continuum response is traced to the halo structure of 11^{11}Li providing extreme low energy shift to all the expected continuum excitations. Competitions of the initial state structure (ISS) and the final state interaction (FSI) effects on the spectrum and three-body correlations in 10^{10}He are discussed. Analogous effect of the extreme low-energy shift could also be expected in other cases of 2n2n emitters populated in reactions with halo nuclei. Simplified example of the 10^{10}He spectrum in α\alpha knockout from 14^{14}Be, is given. We also discuss limits on the properties of 9^{9}He stemming from the observed 10^{10}He spectrum.Comment: 10 pages, 13 figure

    Pauli-principle driven correlations in four-neutron nuclear decays

    Full text link
    Mechanism of simultaneous non-sequential four-neutron (4n4n) emission (or `true' 4n4n-decay) has been considered in phenomenological five-body approach. This approach is analogous to the model of the direct decay to the continuum often applied to 2n2n- and 2p2p-decays. It is demonstrated that 4n4n-decay fragments should have specific energy and angular correlations reflecting strong spatial correlations of `valence' nucleons orbiting in their 4n4n-precursors. Due to the Pauli exclusion principle, the valence neutrons are pushed to the symmetry-allowed configurations in the 4n4n-precursor structure, which causes a `Pauli focusing' effect. Prospects of the observation of the Pauli focusing have been considered for the 4n4n-precursors 7^7H and 28^{28}O. Fingerprints of their nuclear structure or/and decay dynamics are predicted

    Hadronic Regge Trajectories: Problems and Approaches

    Get PDF
    We scrutinized hadronic Regge trajectories in a framework of two different models --- string and potential. Our results are compared with broad spectrum of existing theoretical quark models and all experimental data from PDG98. It was recognized that Regge trajectories for mesons and baryons are not straight and parallel lines in general in the current resonance region both experimentally and theoretically, but very often have appreciable curvature, which is flavor-dependent. For a set of baryon Regge trajectories this fact is well described in the considered potential model. The standard string models predict linear trajectories at high angular momenta J with some form of nonlinearity at low J.Comment: 15 pages, 9 figures, LaTe

    Phytoplankton of the delta of the Mekong River during the dry season

    Get PDF
    Human activity has disturbed the functioning of river ecosystems all around the globe. The current global climatic fluctuations and local anthropogenic impact lead to rearrangement in the structure and functioning of aquatic communities. One of the most important components of aquatic ecosystems is phytoplankton as the main primary producer of the organic matter, the basis for trophic relations and indicator of changes in the environment. This article presents the first results of a study concerning the peculiarities of quantitative distribution of biomass and species composition of phytoplankton in the delta of the Mekong River at the beginning of the dry season (December of 2018). Diatoms dominated according to biomass practically in all the stations of selection of samples. The total biomass of phytoplankton on average accounted for 0.049 ± 0.007 mg/L at the abundance of 40 ± 7 103 ind./L. In practically all the studied plots, according to biomass, the dominating diatoms were first of all Aulacoseira granulata, A. islandica, Cyclotella meneghiniana, Cyclotella spp., and Oxyneis binalis. Among Chlorophyta, most often we found Chlorella sp. and Scenedesmus quadricauda, but their biomass was insignificant. We determined statistically significant correlation relationships between biomass of phytoplankton and hydrological parameters. Based on the Spearman’s rank correlation coefficient, we determined negative relations between the total biomass of phytoplankton with salinity and pH. Positive correlation was seen between the biomass of diatoms and turbidity, and also between the temperature and the biomass of chlorophytes and Dinophyta. The biomass of golden algae (Chrysophyceae) and Dinophyta positively correlated with the mineralization. Quantitative regression analysis confirmed the close relationship between the total biomass of phytoplankton, hydrophysical and hydrochemical parameters. Besides the importance of scientific data on biological diversity and ecology of plankton algae, the results we obtained are necessary for organizing biological monitoring in the delta of the Mekong River in the future

    Optical novae: the major class of supersoft X-ray sources in M 31

    Full text link
    We searched for X-ray counterparts of optical novae detected in M 31 and M 33. We combined an optical nova catalogue from the WeCAPP survey with optical novae reported in the literature and correlated them with the most recent X-ray catalogues from ROSAT, XMM-Newton and Chandra, and - in addition - searched for nova correlations in archival data. We report 21 X-ray counterparts for novae in M 31 - mostly identified as supersoft sources (SSS) by their hardness ratios - and two in M 33. Our sample more than triples the number of known optical novae with supersoft X-ray phase. Most of the counterparts are covered in several observations allowing us to constrain their X-ray light curves. Selected brighter sources were classified by their XMM-Newton EPIC spectra. We use the well determined start time of the SSS state in two novae to estimate the hydrogen mass ejected in the outburst to ~10^{-5}M_sun and ~10^{-6}M_sun, respectively. The supersoft X-ray phase of at least 15% of the novae starts within a year. At least one of the novae shows a SSS state lasting 6.1 years after the optical outburst. Six of the SSSs turned on between 3 and 9 years after the optical discovery of the outburst and may be interpreted as recurrent novae. If confirmed, the detection of a delayed SSS phase turn-on may be used as a new method to classify novae as recurrent. At the moment, the new method yields a ratio of recurrent novae to classical novae of 0.3 which is in agreement (within the errors) with previous works.Comment: 16 pages, 7 figures, A&A revised version, 1 nova in M33 added, restructured discussion, summary and conclusion

    Minigap, Parity Effect and Persistent Currents in SNS Nanorings

    Get PDF
    We have evaluated a proximity-induced minigap in the density of states (DOS) of SNS junctions and SNS nanorings at an arbitrary concentration of non-magnetic impurities. We have demonstrated that an isotropic energy minigap in the electron spectrum opens up already at arbitrarily weak disorder, while angle resolved DOS at higher energies can remain strongly anisotropic. The minigap value ϵg\epsilon_g can be tuned by passing a supercurrent through an SNS junction or by applying a magnetic flux Φ\Phi to an SNS ring. A non-monotonous dependence of ϵg\epsilon_g on Φ\Phi has been found at weak disorder. We have also studied persistent currents in isolated SNS nanorings. For odd number of electrons in the ring we have found a non-trivial current-phase (current-flux) relation which -- at relatively high disorder -- may lead to a π\pi-junction state and spontaneous currents in the ground state of the system.Comment: 7 pages, 8 figure

    Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics

    Get PDF
    Protein filaments are used in myriads of ways to organize other molecules within cells. Some filament-forming proteins couple the hydrolysis of nucleotides to their polymerization cycle, thus powering the movement of other molecules. These filaments are termed cytomotive. Only members of the actin and tubulin protein superfamilies are known to form cytomotive filaments. We examined the basis of cytomotivity via structural studies of the polymerization cycles of actin and tubulin homologs from across the tree of life. We analyzed published data and performed structural experiments designed to disentangle functional components of these complex filament systems. Our analysis demonstrates the existence of shared subunit polymerization switches among both cytomotive actins and tubulins, i.e., the conformation of subunits switches upon assembly into filaments. These cytomotive switches can explain filament robustness, by enabling the coupling of kinetic and structural polarities required for cytomotive behaviors and by ensuring that single cytomotive filaments do not fall apart
    • …
    corecore