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Minigap, Parity Effect and Persistent Currents in SNS Nanorings
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We have evaluated a proximity-induced minigap in the density of states (DOS) of SNS junctions
and SNS nanorings at an arbitrary concentration of non-magnetic impurities. We have demonstrated
that an isotropic energy minigap in the electron spectrum opens up already at arbitrarily weak
disorder, while angle resolved DOS at higher energies can remain strongly anisotropic. The minigap
value εg can be tuned by passing a supercurrent through an SNS junction or by applying a magnetic
flux Φ to an SNS ring. A non-monotonous dependence of εg on Φ has been found at weak disorder.
We have also studied persistent currents in isolated SNS nanorings. For odd number of electrons
in the ring we have found a non-trivial current-phase (current-flux) relation which – at relatively
high disorder – may lead to a π-junction state and spontaneous currents in the ground state of the
system.

I. INTRODUCTION

In hybrid structures composed of a superconductor
(S) and a normal metal (N) Cooper pairs can penetrate
into the latter thereby significantly changing the prop-
erties of the system1. As a result of this proximity ef-
fect the N-metal also acquires superconducting properties
being able to carry supercurrent and, hence, exhibiting
Josephson2,3,4 and Meissner5,6 effects.

Another interesting consequence of this proximity-
induced superconductivity is the existence of a minigap
in the electron spectrum of a normal metal. In the
diffusive limit this minigap εg was found to be of or-
der of the Thouless energy εTh of this metal7,8,9,10. In
strictly ballistic SN and SNS systems this gap is strongly
anisotropic11, and it vanishes for electrons propagating
parallel to the SN interface. For arbitrary concentration
of non-magnetic impurities the minigap dependence on
the electron elastic mean free path was studied in Ref. 12.
In SNS structures the proximity-induced minigap εg can
be tuned by applying the phase difference ϕ across the
N-metal2,13.

Modifications of the normal metal density of states
(DOS) due to the proximity effect can be – and were –
studied experimentally with the aid of tunneling spec-
troscopy methods, see, e.g., Ref. 14. In this paper
we point out that the proximity-induced minigap in SN
sandwiches can be directly measured with the aid of the
superconducting parity effect15,16,17. Indeed, the ground
state energies of isolated superconducting system with
odd and even electron numbers should differ exactly by
the value of the gap in the electron spectrum. In the case
of superconducting grains it is just the BCS gap, while
in SN and SNS structures this value should be set by
the proximity-induced minigap εg. Hence, the latter can
be directly observed in an experimental setup similar to
that used, e.g., in Ref. 18.

The possibility of tuning the minigap value εg(ϕ) by
passing the supercurrent through SNS junctions provides
additional ways to independently test theoretical predic-
tions. One can, for instance, consider an isolated su-

FIG. 1: A superconducting ring with embedded normal metal
of length d.

perconducting ring with an embedded layer of a normal
metal, the so-called SNS ring19. This system is depicted
in Fig. 1. Applying an external magnetic flux Φ to such
a system one induces persistent currents (PC) circulating
inside the ring. Both the magnitude and the flux depen-
dence of such currents will depend on the parity of the
total number of electrons in the ring19,20. The difference
between PC values for odd (Io) and even (Ie) ensembles
is related to the minigap value εg(ϕ). This relation ac-
quires a particularly simple form in the limit T → 0 in
which case one finds19

Io(Φ) = Ie(Φ) + 2e
∂εg(ϕ)

∂ϕ
. (1)

The last term in this equation describes the contribu-
tion to the current from the “odd” electron occupying
the lowest available state above the minigap εg(ϕ) in the
density of states of the normal metal.

For a broad range of system parameters the phase dif-
ference ϕ across the SNS junction is linked to the exter-
nal magnetic flux Φ by means of the standard relation
ϕ = 2πΦ/Φ0 (Φ0 is the flux quantum) which will also be
assumed to hold throughout this paper. Eq. (1) can be
used, on one hand, for an independent study of the phase
dependence of the minigap εg(ϕ) and, on the other hand,
for further investigations of the parity-affected persistent
currents in SNS nanorings.
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The structure of our paper is as follows. In Sec. II
we will employ the quasiclassical formalism of Eilen-
berger equations and evaluate the phase-dependent mini-
gap εg(ϕ) in SNS systems at an arbitrary concentration
of non-magnetic impurities. We will demonstrate that an
isotropic minigap opens up in the normal metal already
in the limit of very weak disorder. At sufficiently large
values of the electron elastic mean free paths we recover
a non-monotonous dependence of the minigap on ϕ. In
Sec. III we will analyze an interplay between parity ef-
fect and persistent currents in SNS nanorings with an
arbitrary impurity concentration. We will show that in
the case of odd total number of electrons in the ring the
dependence of PC on the applied magnetic flux acquires
non-trivial features which might lead to a π-junction be-

havior and spontaneous currents in the ground state of
the ring. A brief discussion of our key observations is
presented in Sec. IV.

II. PHASE-DEPENDENT MINIGAP AT

ARBITRARY IMPURITY CONCENTRATIONS

Let us analyze thermodynamic properties of SNS rings
presented in Fig. 1. We will stick to the simplest case of a
superconductor with singlet isotropic pairing and assume
that both NS interfaces are fully transparent. The length
of the normal metal layer and its cross section are denoted
respectively as d and A.

Our analysis is based on the Eilenberger equations10,21

for the energy-integrated retarded 2 × 2 matrix Green
functions ĝ

[

ετ̂3 − ∆̂(r) − Σ̂(r, ε), ĝ(pF , r, ε)
]

= −ivF∇ĝ(pF , r, ε),

(2)

ĝ2(pF , r, ε) = 1, (3)

where [â, b̂] = âb̂− b̂â, ε is the quasiparticle energy, pF =
mvF is the electron Fermi momentum vector and τ̂3 is the
Pauli matrix. The matrices ĝ and ∆̂ have the standard
form

ĝ =

(

g f
f+ −g

)

, ∆̂ =

(

0 ∆
−∆∗ 0

)

, (4)

where ∆ is the BCS superconducting order parameter
chosen to be spatially constant in the superconductor and
equal to zero in the normal metal. Electron scattering
on non-magnetic impurities is accounted for by the self-
energy term Σ̂. Within the Born approximation one has

Σ̂(r, ε) = −i
vF

2ℓ
〈ĝ(pF , r, ε)〉 , (5)

where ℓ is the electron elastic mean free path and angular
brackets 〈...〉 denote averaging over the Fermi momentum
directions.

FIG. 2: Angle averaged DOS in the middle of the normal
layer. Here and below we choose d = 10ξ0.

The current density and the angle resolved local den-
sity of states are defined as

j(r) = eN0Re

∞
∫

−∞

dε tanh
( ε

2T

)

〈vF g(pF , r, ε)〉 , (6)

ν(pF , r, ε) = Reg(pF , r, ε), (7)

where DOS ν(pF , r, ε) is normalized to its normal state
value at the Fermi energy N0 = mpF /2π2. Let us
also note that the above quasiclassical formalism and,
in particular, the description of electron scattering in
terms of the self-energy (5) are applicable provided the
number of conducting channels in the system is large
NCh = Ap2

F /4π ≫ 1. This inequality will be assumed
to hold throughout the whole calculation22. In addi-
tion, we will assume that the length of the N-metal
strongly exceeds the superconducting coherence length
d ≫ ξ0 ∼ vF /∆.

Our first goal is to analyze the behavior of DOS
ν(pF , r, ε) in the normal metal as a function of the phase
difference ϕ = 2πΦ/Φ0 for arbitrary values of elastic
mean free path ℓ. To begin with, let us recall that in
a strictly ballistic limit ℓ → ∞ the spectrum of an SNS
junction below the BCS energy gap is formed by discrete
Andreev levels with energies En. In the limit En ≪ ∆
the values En read2,11

En =
|vx|

2d
[π(2n + 1) + ϕsgn vx], (8)

where vx is the x-component of the Fermi velocity vector
vF . This expression demonstrates that the proximity
induced gap in the spectrum of a ballistic SNS system
is strongly anisotropic. It depends on the direction of
the Fermi velocity and vanishes for electrons propagating
parallel to NS interfaces. In other words, the trajectories
for such electrons do not cross NS interfaces and, hence,
these electrons do not suffer Andreev reflection and do
not “feel” any proximity effect.

The situation changes significantly in the presence of
already very weak disorder. In this case all electrons
in the N-metal get scattered by non-magnetic impuri-
ties and, sooner or later, their trajectories hit one of the
NS interfaces and electrons get Andreev-reflected. As a
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FIG. 3: The angle resolved DOS in the middle of the normal
layer (thin lines) together with the angle averaged DOS (bold
solid line). The angle between quasiparticle momentum and
the x-direction (normal to NS interfaces) is denoted as θ.

result, an isotropic proximity-induced minigap εg(ϕ) de-
velops in the density of states of the normal metal. The
value of this minigap depends both on the electron mean
free path ℓ and the phase difference ϕ but it remains in-
dependent of the momentum direction for all values of ℓ
and ϕ.

This property is illustrated in Figs. 2 and 3. Fig.
2 shows DOS inside the normal metal with disorder to-
gether with that evaluated in the ballistic limit ℓ → ∞.
An important difference between the two curves is ob-
served at low energies: The proximity-induced minigap
is strictly zero in the ballistic limit while it opens up
in the presence of disorder. At higher energies electron
scattering on disorder broadens and eventually washes
out peaks corresponding to Andreev levels (8).

Fig. 3 displays a typical energy dependence of the an-
gle resolved density of states ν(pF , r, ε) inside the normal
layer of an SNS structure in the presence of disorder. We
observe that ν(pF , r, ε) vanishes for all ε < εg(ϕ) in-
dependently of the direction of the Fermi momentum.
Thus, already very weak disorder23 makes the minigap
isotropic for all values of ϕ. In addition, we have verified
that the minigap value does not depend on the coordinate
inside the normal metal.

At the same time at energies just above the minigap
ε > εg the anisotropy in the density of states is clearly ob-
servable for sufficiently large values of the electron mean
free path ℓ, see Fig. 3. This anisotropy decreases with
decreasing mean free path ℓ, and in the dirty limit ℓ <

∼ ξ0

the density of states ν(pf , r, ε) becomes almost isotropic.
Anisotropic behavior of the density of states in the ultra-
clean limit ℓ ≫ d can easily be understood if one ob-
serves that the minigap value in the latter limit is of
order εg ∼ vF /ℓ ≪ vF /d. Hence, for quasiparticles with

FIG. 4: The minigap εg(0) and the zero temperature Joseph-
son critical current of an SNS junction as a function of d/ℓ.
For sufficiently short values of ℓ both quantities approach the
corresponding results derived in the diffusive limit from the
Usadel equation analysis.

energies just above the minigap vF /d ≫ ε >
∼ vF /ℓ one

can estimate vx ∼ vF d/ℓ ≪ vF , i.e. these states are
formed predominantly by grazing electrons.

Let us also note that in the normal metal at energies
just above the minigap ε > εg the angle averaged DOS
ν(r, ε) = 〈ν(pF , r, ε)〉 depends on energy as

ν(r, ε) ∝ (ε − εg)
1/2. (9)

This square-root dependence appears to be universal for
all mean free path values ℓ. In order to verify this state-
ment we have plotted ln ν(ε) versus logarithm of the pa-
rameter (ε− εg)/εg for different values of ℓ (not shown).
For all impurity concentrations at energies above the
minigap our numerical data points collapse on straight
lines corresponding to the same slope 1/2. For very clean
systems the dependence (9) is observed within narrower
energy interval above the gap, and in the limit ℓ → ∞
this interval shrinks to zero faster than the minigap itself.
On the contrary, for dirtier systems Eq. (9) applies for
broader energy intervals and match with the correspond-
ing dependence13 established from Usadel equations in
the diffusive limit.

The dependence of the minigap εg at ϕ = 0 on the
mean free path ℓ is depicted in Fig. 4. We have evaluated
the minigap at d = 10ξ0 and d = 103ξ0 and found a very
good agreement with earlier numerical results of Pilgram
et al.12 obtained for NS structures with the normal layer
thickness equal to 102ξ0. Our numerical results for εg ≡
εg(0) are rather well approximated by a simple analytical
formula

εg =
vF

d

ay

by2 + cy + 1
, (10)

where y = d/ℓ and a ≈ 0.47, b ≈ 0.45, c ≈ 1.45. With
decreasing ℓ the minigap first grows as εg ≈ 0.47vF /ℓ,
reaches its maximum εmax

g ≈ 0.17vF /d at ℓ ≈ 0.67d and

then decays for small ℓ as εg ≈ 3.12εTh = 1.04vF ℓ/d2

approaching the results of Belzig et al.8,10 derived from
the Usadel equations analysis. Here and below εTh =
vF ℓ/3d2 is the Thouless energy of a normal metal.

Phase dependence of the minigap is shown in Fig. 5 for
the mean free path values ranging between quasi-ballistic
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FIG. 5: Phase dependence of the minigap εg(ϕ) for an SNS
structure at different values of the electron mean free path l.

(ℓ ≫ d) and diffusive (ℓ ≪ d) regimes. A somewhat
unexpected non-monotonous dependence of the minigap
value on the phase difference is observed in the ultra-
clean limit ℓ ≫ d. We believe that this effect is caused
by a non-trivial redistribution in the angle resolved DOS
in the presence of the phase twist ϕ across the N-layer.
With decreasing the mean free path the maximum of the
function εg(ϕ) moves away from the point ϕ = π to-
wards smaller values of the phase difference. Eventually
the maximum of εg(ϕ) reaches the point ϕ = 0 and this
dependence becomes monotonous at all smaller values of
ℓ. In the diffusive limit ℓ ≪ d our results approach those
obtained by Zhou et al.13 from Usadel equations, cf. Fig.
2 in Ref. 13.

In the limit ℓ ≪ d the minigap dependence on ϕ is
rather well approximated by a simple parabola

εg(ϕ) ≃ εg(0)(1 − ϕ2/π2). (11)

Note that although this dependence is in agreement with
our numerical results as well as with those displayed in
Fig. 2 of Ref. 13, it does not agree with Eq. (5) from
that paper at small phases ϕ ≪ π.

III. PERSISTENT CURRENTS AND PARITY

EFFECT

We now go over to the calculation of persistent cur-
rents in isolated SNS nanorings. As the total number of
electrons in the ring is fixed to be either even or odd
it is necessary to account for the parity effect. This
task will be accomplished within the parity projection
technique24,25,26 recently adapted19,20 to the calculation
of PC in superconducting nanorings.

Let define and evaluate the even/odd parity projected

thermodynamic potentials

Ωe/o = Ωf − T ln

[

1 ± e−A

2

]

, A = (Ωb − Ωf )/T, (12)

where Ωf is the standard grand canonical thermody-
namic potential and Ωb is obtained from Ωf by expressing
the latter as a sum over the Fermi Matsubara frequencies
ωf = πT (2n + 1) with subsequent substitution of ωf by
the Bose frequencies ωb = 2πTn. For further details we
refer the reader to the paper25.

With the aid of the Eilenberger quasiclassical
formalism21 it is easy to cast the grand canonical ther-
modynamic potential of the system Ωf to the following
form

Ωf = Ω̃−4N0T

∫

dr

∞
∫

0

dε ln [2 cosh(ε/2T )]ν(r, ε), (13)

where Ω̃ =
∫

dr|∆2(r)|/λ+
∑

k
ξk, λ is the BCS coupling

constant and ξk is the single particle energy. Similarly,
for Ωb we find

Ωb = Ω̃−4N0T

∫

dr

∞
∫

0

dε ln [2 sinh(ε/2T )]ν(r, ε). (14)

With the aid of the above expressions it is now possible
to directly evaluate PC circulating in a superconducting
ring both for even and odd electron ensembles. Taking
the derivative of Ωf/b with respect to the phase difference

one finds19,20:

Ie/o = If ±
Ib − If

exp(A) ± 1
. (15)

where the upper (lower) sign corresponds to the even
(odd) ensemble and

Ie/o = 2e
∂Ωe/o

∂ϕ
, If/b = 2e

∂Ωf/b

∂ϕ
. (16)

It is well known that the parity effect is mostly pro-
nounced in the low temperature limit in which case the
parameter A (12) is much larger than one25 A ≫ 1. Eval-
uating the integrals in Eqs. (13), (14) at temperatures
T ≪ |εg(ϕ)| we obtain

A(T ) = AN (T ) + AS(T ), (17)

where

AN (T ) ∼ N0VNT 3/2ε−1/2
g (ϕ) exp(−εg(ϕ)/T ), (18)

AS(T ) ∼ N0VST 1/2∆1/2 exp(−∆/T ) (19)

are the contributions respectively from the normal and
superconducting parts of the ring with the corresponding
volumes VN and VS . The term AN was evaluated making
use of the dependence (9) for DOS at energies ε just above
the minigap.
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FIG. 6: Phase dependence for the zero temperature Josephson
current I(ϕ) at different values of the mean free path l.

Since throughout this paper we always assume the
minigap to be smaller than the superconducting gap,
εg(ϕ) < ∆, at sufficiently low T the term AN domi-
nates over AS provided the volume ratio VN/VS is not
too small. Assuming that the contribution AS can be
neglected, from the condition25 A(T ∗) ∼ 1 we arrive at
the estimate for the crossover temperature T ∗. above
which the difference between thermodynamic potentials
for even and odd ensembles is negligible and the parity
effect is smeared out by thermal fluctuations. Within the
logarithmic accuracy we find

T ∗ ≈ εg(ϕ)/ ln(N0VNεg(ϕ)). (20)

In the whole temperature range T < T ∗ where the parity
effect remains pronounced the temperature effect on the
Josephson current across SNS junction turns out to be
negligible for all values of the mean free paths ℓ. This is
guaranteed by the inequality T ∗ ≪ min(εTh, vF /d) which
is always satisfied for generic systems. Hence, in order to
study PC in the presence of the parity effect it is suffi-
cient to restrict our calculation to the zero temperature
limit T = 0. In this case from the above analysis one
immediately arrives at Eq. (1) which establishes a di-
rect relation between PC values in the even and the odd
superconducting ensembles.

Let us first evaluate PC for the even ensemble Ie. At
T = 0 this current identically coincides19,20 with one cal-
culated for the grand canonical ensemble. The latter is
easily evaluated with the aid of the quasiclassical Eilen-
berger equations (2-6). The results for the current-phase
relation Ie(ϕ) are displayed in Fig. 6 for various impurity
concentrations. The dependence of the critical current IC

on the electron mean free path ℓ is presented in Fig. 4.
PC in the odd ensemble Io at T = 0 can now be triv-

ially evaluated by making use of Eq. (1) and combining
our results for Ie(ϕ) with those for the minigap εg(ϕ)

FIG. 7: Phase dependence of the Josephson current at T = 0
for the odd and even number of electrons in the ring.

derived in the previous section. The typical dependence
Io(ϕ) is displayed in Fig. 7. We observe that at suffi-
ciently large values of ϕ < π the absolute value of the
odd electron contribution to PC 2e∂εg/∂ϕ exceeds the
term Ie(ϕ) and the total current Io changes the sign.
This non-trivial parity-affected current-phase relation is
specific for SNS rings with disorder and it substantially
differs from the current-phase relations derived earlier for
SNS rings with ballistic19 and resonant20 transmissions.

At the same time, as in the previous cases19,20, in the
odd ensemble there emerges a possibility for a π-junction
state as well as for spontaneous currents in the ground
state of the system without any externally applied mag-
netic flux. In order to analyze the situation it is sufficient
to evaluate the ground state energy of the SNS junction
by integrating Eq. (1) with respect to the phase ϕ. One
finds

Eo(ϕ) = Ee(ϕ)−εg(0)+εg(ϕ), Ee(ϕ) =
1

2e

ϕ
∫

0

Ie(ϕ)dϕ,

(21)
where Ee/o(ϕ) are the ground state energies of SNS
junction for even and odd number of electrons in the
ring. While the energy Ee(ϕ) is always non-negative and
reaches its minimum at ϕ = 0, in the odd case the ground
state energy Eo(ϕ) can become negative reaching its ab-
solute minimum at ϕ = π. This physical situation of a
π-junction is illustrated in Fig. 8.

It is easy to find out under which conditions the π-
junction state becomes possible. For that purpose it is
sufficient to observe that for any impurity concentration
Ee(π) = αIC/e, where IC is the grand canonical critical
current at T = 0 and α is a number of order one which
depends on the particular form of the current-phase re-
lation. The π-junction condition Eo(π) < 0 is equivalent
to the inequality

εg(0) > αIC/e. (22)

From Fig. 4 it is obvious that in the many channel
limit the inequality (22) cannot be satisfied for suffi-
ciently large ℓ, in which case IC is large and, on the
contrary, the minigap εg(0) is small27. On the other
hand, for sufficiently short values of the mean free path
IC ∝ ℓ2 decays faster with decreasing ℓ as compared
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FIG. 8: Josephson energy E(ϕ) of an SNS ring as a function
of the phase difference ϕ for the even and odd ensembles. The
solid curve corresponds to a π-junction state.

to the minigap εg(0) ∝ ℓ, and the π-junction state be-
comes possible. In particular, in the diffusive limit one
finds10 IC ≃ 10.82εTh/eRN = 1.53eNChvF ℓ2/d3 and
α ≃ 1.05, where RN is the Drude resistance of a nor-
mal metal. Combining these results with the expression
for the minigap8,13 εg(0) ≃ 3.12εTh, from the condition
(22) we observe that in the odd case a π-junction state is
realized provided the number of conducting channels in
the junction NCh is smaller than

NCh < 0.65d/ℓ. (23)

This condition is not very restrictive and it can certainly
be achieved in various experiments. For sufficiently dirty
junctions it allows for a formation of a π-junction state
even in the many channel limit. The condition (23) can
also be rewritten as

gN < 1.73,

where gN = Rq/RN = 8NChl/3d is the dimensionless
conductance of a normal layer and Rq = h/e2 ≈ 25.8 kΩ
is the quantum resistance unit.

The condition for the presence of spontaneous currents
in the ground state of SNS rings with an odd number of
electrons is established analogously, one should only take
into account an additional energy of the magnetic field
produced by PC circulating inside the ring. The ground
state with spontaneous currents is possible provided the
total energy of the ring Etot(π) becomes negative, i.e.

Etot(π) = 1.8εTh [gN − 1.73] +
(Φ0/2)2

2L
< 0, (24)

where L is the ring inductance. This condition is more
stringent than that for the π-junction state, but can also
be satisfied provided the ring inductance L exceeds a
certain threshold value which, strictly speaking, depends
on gN and can roughly be estimated as ∼ 0.1Φ2

0/εTh.

IV. DISCUSSION

For clarity, let us briefly summarize our key observa-
tions. Our analysis was focused on the two main issues,

the proximity-induced minigap in NS and SNS structures
at an arbitrary concentration of non-magnetic impurities
and the effect of parity number on persistent currents
in SNS nanorings. We have demonstrated that already
weak disorder qualitatively modifies the density of states
in the normal metal of NS and SNS proximity structures.
A striking observation at this point is that the proximity-
induced minigap εg turns out to be isotropic for an ar-
bitrarily weak disorder28, even though DOS at energies
above the gap ε > εg may remain highly anisotropic, cf.,
e.g., Fig. 3. Another interesting observation is the possi-
bility of a non-monotonous dependence of the minigap εg

on the applied magnetic flux Φ (or phase ϕ) in SNS rings,
cf. Fig. 5. Such a non-monotonous dependence can be
realized only in the limit of weak disorder, whereas for
not too long elastic mean free paths a monotonous de-
crease of the minigap from its maximum value at Φ = 0
to zero at Φ = Φ0/2 was found.

Piercing an SNS ring by an external magnetic flux one
induces circulating persistent currents in such a ring. In
an isolated ring both the amplitude and flux dependence
of such PC may strongly depend on the electron parity
number. Provided the number of electrons in the ring is
odd, one electron remains unpaired down to T = 0 and
occupies the lowest available state above the proximity-
induced minigap εg(ϕ). This electron produces a coun-
tercurrent which – in the limit of relatively short electron
mean free paths – may significantly modify the current-
phase relation and yield a π-junction behavior and spon-
taneous currents in the ground state of an SNS ring flow-
ing in the absence of any external magnetic flux. Note,
that although these observations look qualitatively simi-
lar to earlier results derived for SNS rings with ballistic19

and resonant20 transmission, there also exist important
differences. In particular, the current-phase relation is
entirely different in the diffusive limit considered here.
Also the restriction on the number of conducting chan-
nels NCh in the normal metal (23) is less stringent that
that formulated in Refs. 19,20. This feature of diffusive
SNS rings is rather advantageous for possible experimen-
tal observation of the effects discussed here.

Our results demonstrate that superconducting parity
effect can be used in order to directly measure both the
magnitude and the flux dependence of the minigap in
SNS nanorings. This can be done, e.g., with the aid of a
setup similar to one used in Ref. 18. Such type of mea-
surements is not restricted by the number of channels in
the normal part of the ring and may serve as an alterna-
tive to tunneling spectroscopy of the minigap. Supercon-
ducting rings with embedded carbon nanotubes might be
promising candidates in order to experimentally investi-
gate parity-affected persistent currents in SNS nanorings.
Several groups29,30,31,32 have recently reported observa-
tions of dc Josephson current in superconducting junc-
tions with carbon nanotubes. Therefore, it appears feasi-
ble to fabricate and experimentally investigate SNS rings
with carbon nanotubes which should exhibit properties
predicted and analyzed in our paper.
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