52 research outputs found

    Gender-Related Differences in the Prevalence of Cardiovascular Disease Risk Factors and their Correlates in Urban Tanzania.

    Get PDF
    \ud Urban areas in Africa suffer a serious problem with dual burden of infectious diseases and emerging chronic diseases such as cardiovascular diseases (CVD) and diabetes which pose a serious threat to population health and health care resources. However in East Africa, there is limited literature in this research area. The objective of this study was to examine the prevalence of cardiovascular disease risk factors and their correlates among adults in Temeke, Dar es Salaam, Tanzania. Results of this study will help inform future research and potential preventive and therapeutic interventions against such chronic diseases. The study design was a cross sectional epidemiological study. A total of 209 participants aged between 44 and 66 years were included in the study. A structured questionnaire was used to evaluate socioeconomic and lifestyle characteristics. Blood samples were collected and analyzed to measure lipid profile and fasting glucose levels. Cardiovascular risk factors were defined using World Health Organization criteria. The age-adjusted prevalence of obesity (BMI > or = 30) was 13% and 35%, among men and women (p = 0.0003), respectively. The prevalence of abdominal obesity was 11% and 58% (p < 0.0001), and high WHR (men: >0.9, women: >0.85) was 51% and 73% (p = 0.002) for men and women respectively. Women had 4.3 times greater odds of obesity (95% CI: 1.9-10.1), 14.2-fold increased odds for abdominal adiposity (95% CI: 5.8-34.6), and 2.8 times greater odds of high waist-hip-ratio (95% CI: 1.4-5.7), compared to men. Women had more than three-fold greater odds of having metabolic syndrome (p = 0.001) compared to male counterparts, including abdominal obesity, low HDL-cholesterol, and high fasting blood glucose components. In contrast, female participants had 50% lower odds of having hypertension, compared to men (95%CI: 0.3-1.0). Among men, BMI and waist circumference were significantly correlated with blood pressure, triglycerides, total, LDL-, and HDL-cholesterol (BMI only), and fasting glucose; in contrast, only blood pressure was positively associated with BMI and waist circumference in women. The prevalence of CVD risk factors was high in this population, particularly among women. Health promotion, primary prevention, and health screening strategies are needed to reduce the burden of cardiovascular disease in Tanzania.\u

    Enteral Multiple Micronutrient Supplementation in Preterm and Low Birth Weight Infants: A Systematic Review and Meta-analysis

    Get PDF
    OBJECTIVES To assess effects of supplementation with 3 or more micronutrients (multiple micronutrients; MMN) compared to no MMN in human milk-fed preterm and low birth weight (LBW) infants. RESULTS Data on a subgroup of 414 preterm or LBW infants from 2 randomized controlled trials (4 reports) were included. The certainty of evidence ranged from low to very low. For growth outcomes in the MMN compared to the non-MMN group, there was a small increase in weight-for-age (2 trials, 383 participants) and height-for-age z-scores (2 trials, 372 participants); a small decrease in wasting (2 trials, 398 participants); small increases in stunting (2 trials, 399 participants); and an increase in underweight (2 trials, 396 participants). For neurodevelopment outcomes at 78 weeks, we found small increases in Bayley Scales of Infant Development, Version III (BISD-III), scores (cognition, receptive language, expressive language, fine motor, gross motor) in the MMN compared to the non-MMN group (1 trial, 27 participants). There were no studies examining dose or timing of supplementation. CONCLUSIONS Evidence is insufficient to determine whether enteral MMN supplementation to preterm or LBW infants who are fed mother's own milk is associated with benefit or harm. More trials are needed to generate evidence on mortality, morbidity, growth, and neurodevelopment.publishedVersio

    Sequencing and Analysis of Approximately 40 000 Soybean cDNA Clones from a Full-Length-Enriched cDNA Library

    Get PDF
    A large collection of full-length cDNAs is essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We obtained a total of 39 936 soybean cDNA clones (GMFL01 and GMFL02 clone sets) in a full-length-enriched cDNA library which was constructed from soybean plants that were grown under various developmental and environmental conditions. Sequencing from 5′ and 3′ ends of the clones generated 68 661 expressed sequence tags (ESTs). The EST sequences were clustered into 22 674 scaffolds involving 2580 full-length sequences. In addition, we sequenced 4712 full-length cDNAs. After removing overlaps, we obtained 6570 new full-length sequences of soybean cDNAs so far. Our data indicated that 87.7% of the soybean cDNA clones contain complete coding sequences in addition to 5′- and 3′-untranslated regions. All of the obtained data confirmed that our collection of soybean full-length cDNAs covers a wide variety of genes. Comparative analysis between the derived sequences from soybean and Arabidopsis, rice or other legumes data revealed that some specific genes were involved in our collection and a large part of them could be annotated to unknown functions. A large set of soybean full-length cDNA clones reported in this study will serve as a useful resource for gene discovery from soybean and will also aid a precise annotation of the soybean genome

    Influx of nitrogen-rich material from the outer Solar System indicated by iron nitride in Ryugu samples

    Get PDF
    Large amounts of nitrogen compounds, such as ammonium salts, may be stored in icy bodies and comets, but the transport of these nitrogen-bearing solids into the near-Earth region is not well understood. Here, we report the discovery of iron nitride on magnetite grains from the surface of the near-Earth C-type carbonaceous asteroid Ryugu, suggesting inorganic nitrogen fixation. Micrometeoroid impacts and solar wind irradiation may have caused the selective loss of volatile species from major iron-bearing minerals to form the metallic iron. Iron nitride is a product of nitridation of the iron metal by impacts of micrometeoroids that have higher nitrogen contents than the CI chondrites. The impactors are probably primitive materials with origins in the nitrogen-rich reservoirs in the outer Solar System. Our observation implies that the amount of nitrogen available for planetary formation and prebiotic reactions in the inner Solar System is greater than previously recognized

    Four‐dimensional‐STEM analysis of the phyllosilicate‐rich matrix of Ryugu samples

    Get PDF
    Ryugu asteroid grains brought back to the Earth by the Hayabusa2 space mission are pristine samples containing hydrated minerals and organic compounds. Here, we investigate the mineralogy of their phyllosilicate-rich matrix with four-dimensional scanning transmission electron microscopy (4D-STEM). We have identified and mapped the mineral phases at the nanometer scale (serpentine, smectite, pyrrhotite), observed the presence of Ni-bearing pyrrhotite, and identified the serpentine polymorph as lizardite, in agreement with the reported aqueous alteration history of Ryugu. Furthermore, we have mapped the d-spacings of smectite and observed a broad distribution of values, ranging from 1 to 2 nm, with an average d-spacing of 1.24 nm, indicating significant heterogeneity within the sample. Such d-spacing variability could be the result of either the presence of organic matter trapped in the interlayers or the influence of various geochemical conditions at the submicrometer scale, suggestive of a range of organic compounds and/or changes in smectite crystal chemistry

    A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu

    Get PDF
    Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss

    POSSIBLE ORIGIN OF PRIMITIVE AMORPHOUS SILICATES IN CARBONACEOUS CHONDRITES.

    No full text

    Exploring the potential for top-dressing bread wheat with ammonium chloride to minimize grain yield losses under drought

    Get PDF
    The frequency and severity of drought is predicted to rise in many parts of the world. Considering that drought is the main constraint on rain-fed wheat crop production, both agronomic and genetic measures have been taken to minimize yield losses under drought. Beyond its role as a micronutrient, chloride also acts as an osmoticum, implicated in the regulation of stomatal aperture. This study explores the potential for chloride fertilization of Australian bread wheat (Triticum aestivum L.) to minimize grain yield losses caused by drought stress. For this, two drought-tolerant commercial genotypes (Mace and Gladius) and a well-studied drought-tolerant genotype used in wheat breeding (RAC875) were treated with ammonium chloride, potassium chloride, or ammonium bicarbonate, the latter two treatments served as controls for chloride and ammonium, respectively. Plants were grown under either a watered or water-restricted (drought) regime. The genotype RAC875 was found to accumulate leaf chloride at a significantly higher level than the other genotypes under optimal growth conditions. Under drought conditions, top-dressing RAC875 plants with ammonium chloride resulted in up to a 2.5-fold increase in grain number and this effect was not seen when plants were top-dressed with either of the control fertilizers. The ammonium chloride treatment also minimized losses of grain yield in RAC875 plants grown under drought. Treatment effects were accompanied by an increase in stomatal conductance. These results collectively suggest that the compound fertilizer ammonium chloride can improve drought tolerance of wheat.Farzana Kastury, Vahid Rahimi Eichi, Akiko Enju, Mamoru Okamoto, Sigrid Heuer and Vanessa Melin

    Condensation of cometary silicate dust using an induction thermal plasma system

    No full text
    Glass with embedded metal and sulfides (GEMS), the major components of chondritic-porous interplanetary dust particles (CP-IDPs), is one of the most primitive materials in the Solar System and may be analogous to the amorphous silicate dust observed in various astronomical environments. Mineralogical characteristics of GEMS should reflect their formation process and condition. In this study, synthetic experiments in the sulfur-bearing system of Fe–Mg–Si–O–S were performed with a systematic change in redox conditions using thermal plasma systems to reproduce the mineralogy and textures of GEMS. The resulting condensates were composed of amorphous silicates with Fe-bearing nano-inclusions. The Fe content and texture in the amorphous silicates as well as the mineral phases of the nanoparticles correlate with redox conditions. Fe dissolved in the amorphous silicate as FeO in oxidizing conditions formed Fe-metal nanoparticles in intermediate redox conditions, and gupeiite (Fe3 Si) nanoparticles in reducing conditions. In intermediate to reducing redox conditions, Fe-poor amorphous silicate formed a biphasic texture with Mg- and Si-rich regions, indicating liquid immiscibility during the melt phase. Most Fe-metal particles were surrounded by FeS and formed on the surface of amorphous silicate grains. Condensates produced in intermediate to slightly reducing redox conditions resemble GEMS in that they have similar mineral assemblages and chemical compositions to amorphous silicate, except that the Fe-metal grains are absent from the interior of the amorphous silicate grains. This textural difference can be explained by the sulfidation at high temperatures in this study, in contrast to sulfidation occurring at low temperatures in the presence of H2 in natural GEMS formation. Based on the two-liquid structures observed in the experimental products and in GEMS, also recognized in infrared spectra, we propose that GEMS condensed as silicate melt under limited redox conditions followed by incorporation of multiple metal grains into the silicate melt or by aggregation of coreshell structured grains before sulfidation of the metallic iron. Condensates produced in oxidizing conditions are similar to GEMS-like material in the matrices of primitive carbonaceous chondrite meteorites, indicating the possibility that they form by direct condensation from nebula gas in relatively oxidizing conditions compared to GEMS
    corecore