6,553 research outputs found
Measuring Electric Fields From Surface Contaminants with Neutral Atoms
In this paper we demonstrate a technique of utilizing magnetically trapped
neutral Rb-87 atoms to measure the magnitude and direction of stray electric
fields emanating from surface contaminants. We apply an alternating external
electric field that adds to (or subtracts from) the stray field in such a way
as to resonantly drive the trapped atoms into a mechanical dipole oscillation.
The growth rate of the oscillation's amplitude provides information about the
magnitude and sign of the stray field gradient. Using this measurement
technique, we are able to reconstruct the vector electric field produced by
surface contaminants. In addition, we can accurately measure the electric
fields generated from adsorbed atoms purposely placed onto the surface and
account for their systematic effects, which can plague a precision
surface-force measurement. We show that baking the substrate can reduce the
electric fields emanating from adsorbate, and that the mechanism for reduction
is likely surface diffusion, not desorption.Comment: 7 pages, 6 figures, published in Physical Review
Dynamical Hartree-Fock-Bogoliubov Theory of Vortices in Bose-Einstein Condensates at Finite Temperature
We present a method utilizing the continuity equation for the condensate
density to make predictions of the precessional frequency of single off-axis
vortices and of vortex arrays in Bose-Einstein condensates at finite
temperature. We also present an orthogonalized Hartree-Fock-Bogoliubov (HFB)
formalism. We solve the continuity equation for the condensate density
self-consistently with the orthogonalized HFB equations, and find stationary
solutions in the frame rotating at this frequency. As an example of the utility
of this formalism we obtain time-independent solutions for
quasi-two-dimensional rotating systems in the co-rotating frame. We compare
these results with time-dependent predictions where we simulate stirring of the
condensate.Comment: 13 pages, 11 figures, 1 tabl
Remote manipulator dynamic simulation
A simulator to generate the real time visual scenes required to perform man in the loop investigations of remote manipulator application and design concepts for the space shuttle is described. The simulated remote manipulator consists of a computed display system that uses a digital computer, the electronic scene generator, an operator's station, and associated interface hardware. A description of the capabilities of the implemented simulation is presented. The mathematical models and programs developed for the simulation are included
Global MHD simulation of flux transfer events at the high-latitude magnetopause observed by the cluster spacecraft and the SuperDARN radar system
A global magnetohydrodynamic numerical simulation is used to study the large-scale structure and formation location of flux transfer events (FTEs) in synergy with in situ spacecraft and ground-based observations. During the main period of interest on the 14 February 2001 from 0930 to 1100 UT the Cluster spacecraft were approaching the Northern Hemisphere high-latitude magnetopause in the postnoon sector on an outbound trajectory. Throughout this period the magnetic field, electron, and ion sensors on board Cluster observed characteristic signatures of FTEs. A few minutes delayed to these observations the Super Dual Auroral Radar Network (SuperDARN) system indicated flow disturbances in the conjugate ionospheres. These “two-point” observations on the ground and in space were closely correlated and were caused by ongoing unsteady reconnection in the vicinity of the spacecraft. The three-dimensional structures and dynamics of the observed FTEs and the associated reconnection sites are studied by using the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) MHD code in combination with a simple open flux tube motion model (Cooling). Using these two models the spatial and temporal evolution of the FTEs is estimated. The models fill the gaps left by measurements and allow a “point-to-point” mapping between the instruments in order to investigate the global structure of the phenomenon. The modeled results presented are in good correlation with previous theoretical and observational studies addressing individual features of FTEs
Optical absorption in two-dimensional materials with tilted Dirac cones
This is the final version. Available from the American Physical Society via the DOI in this recordThe interband optical absorption of linearly polarised light by two-dimensional (2D) semimetals hosting tilted and anisotropic Dirac cones in the bandstructure is analysed theoretically. Super- critically tilted (type-II) Dirac cones are characterised by an absorption that is highly dependent on the incident photon polarisation and frequency, and is tunable by changing the Fermi level with a back-gate voltage. Type-II Dirac cones exhibit open Fermi surfaces and large regions of the Brillouin zone where the valence and conduction bands sit either above or below the Fermi level. As a consequence, unlike their sub-critically tilted (type-I) counterparts, type-II Dirac cones have many states that are Pauli blocked even when the Fermi level is tuned to the level crossing point. We analyse the interplay of the tilt parameter with the Fermi velocity anisotropy, demonstrating that the optical response of a Dirac cone cannot be described by its tilt alone. As a special case of our general theory we discuss the proposed 2D type-I semimetal 8-Pmmn Borophene. Guided by our in-depth analytics we develop an optical recipe to fully characterise the tilt and Fermi velocity anisotropy of any 2D tilted Dirac cone solely from its absorption spectrum. We expect our work to encourage Dirac cone engineering as a major route to create gate-tunable thin-film polarisers.European Union Horizon 2020Engineering and Physical Sciences Research Council (EPSRC)NATORoyal Societ
Students with Visual Impairments\u27 Access and Participation in the Science Curriculum: Views of Teachers of Students with Visual Impairments
Science is a core curricular area of instruction for all students and the federal mandates of the Individuals with Disabilities Education Act (2004) and No Child Left Behind (2001) require that students with disabilities are educated in the least restrictive environment and have access to general education science content, based upon rigorous standards. While, most students with visual impairments are educated in the general science classroom, few studies have been done to determine whether appropriate accommodations and modifications are being made in those classrooms to meet the specialized needs of these students. A 35 question survey instrument was disseminated to teachers of the visually impaired through a Visual Impairments Listserve and Facebook group to help determine what pedagogical practices, accommodations, modifications, adaptive equipment and instructional practices are being used to educate students with visual impairments in the United States and Canada. This study helped inform how students with visual impairments are being educated in the science classroom
Implications of 3-D Printing for Teaching Geoscience Concepts to Students with Visual Impairments
This article presents the results of a study on the use of 3-D printed models in a science classroom for students with visual impairments and examines whether the use of these models impacts student conceptual understanding and misconceptions related to geosciences concepts, specifically plate tectonics.
Data were collected one week prior to instruction, one week after instruction and throughout the 3-week instructional period. Results showed that students with visual impairments held many of the same misconceptions about plate tectonics as students who are typically sighted. All students in this study had fewer misconceptions after the instructional period than they held before instruction began; however, both the 3D group and the TG group continued to hold approximately equal numbers of misconceptions. The adaptations and hands-on experiences in this 3-week curriculum proved effective for students with visual impairments; helping them understand the unifying theory of plate tectonics.
Some unique misconceptions held by the students with visual impairments in this research study include plates floating on the ocean, earthquakes moving with the plates, and volcanoes working together with the plates to cause earthquakes. There was a difference between students who had low vision and those with light perception only. The study helps to shed light on the use of 3-D printed models in the science classroom and their effectiveness at helping students with visual impairments learn important geoscience concepts
Measurement of the Temperature Dependence of the Casimir-Polder Force
We report on the first measurement of a temperature dependence of the
Casimir-Polder force. This measurement was obtained by positioning a nearly
pure 87-Rb Bose-Einstein condensate a few microns from a dielectric substrate
and exciting its dipole oscillation. Changes in the collective oscillation
frequency of the magnetically trapped atoms result from spatial variations in
the surface-atom force. In our experiment, the dielectric substrate is heated
up to 605 K, while the surrounding environment is kept near room temperature
(310 K). The effect of the Casimir-Polder force is measured to be nearly 3
times larger for a 605 K substrate than for a room-temperature substrate,
showing a clear temperature dependence in agreement with theory.Comment: 4 pages, 4 figures, published in Physical Review Letter
Recommended from our members
Chemical transport model ozone simulations for spring 2001 over the western Pacific:comparisons with TRACE-P lidar, ozonesondes, and Total Ozone Mapping Spectrometer columns
Two closely related chemical transport models (CTMs) employing the same high-resolution meteorological data (similar to180 km x similar to180 km x similar to600 m) from the European Centre for Medium-Range Weather Forecasts are used to simulate the ozone total column and tropospheric distribution over the western Pacific region that was explored by the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) measurement campaign in February-April 2001. We make extensive comparisons with ozone measurements from the lidar instrument on the NASA DC-8, with ozonesondes taken during the period around the Pacific Rim, and with TOMS total column ozone. These demonstrate that within the uncertainties of the meteorological data and the constraints of model resolution, the two CTMs (FRSGC/UCI and Oslo CTM2) can simulate the observed tropospheric ozone and do particularly well when realistic stratospheric ozone photochemistry is included. The greatest differences between the models and observations occur in the polluted boundary layer, where problems related to the simplified chemical mechanism and inadequate horizontal resolution are likely to have caused the net overestimation of about 10 ppb mole fraction. In the upper troposphere, the large variability driven by stratospheric intrusions makes agreement very sensitive to the timing of meteorological features
On the location of dayside magnetic reconnection during an interval of duskward oriented IMF
We present space- and ground-based observations of the signatures of magnetic reconnection during an interval of duskward-oriented interplanetary magnetic field on 25 March 2004. In situ field and plasma measurements are drawn from the Double Star and Cluster satellites during traversals of the pre-noon sector dayside magnetopause at low and high latitudes, respectively. These reveal the typical signatures of flux transfer events (FTEs), namely bipolar perturbations in the magnetic field component normal to the local magnetopause, enhancements in the local magnetic field strength and mixing of magnetospheric and magnetosheath plasmas. Further evidence of magnetic reconnection is inferred from the ground-based signatures of pulsed ionospheric flow observed over an extended interval. In order to ascertain the location of the reconnection site responsible for the FTEs, a simple model of open flux tube motion over the surface of the magnetopause is employed. A comparison of the modelled and observed motion of open flux tubes (i.e. FTEs) and plasma flow in the magnetopause boundary layer indicates that the FTEs observed at both low and high latitudes were consistence with the existence of a tilted X-line passing through the sub-solar region, as suggested by the component reconnection paradigm. While a high latitude X-line (as predicted by the anti-parallel description of reconnection) may have been present, we find it unlikely that it could have been responsible for the FTEs observed in the pre-noon sector under the observed IMF conditions. Finally, we note that throughout the interval, the magnetosphere was bathed in ULF oscillations within the solar wind electric field. While no one-to-one correspondence with the pulsed reconnection rate suggested by the ground-based observation of pulsed ionospheric flow has been demonstrated, we note that similar periodicity oscillations were observed throughout the solar wind-magnetosphere-ionosphere system. These findings are consistent with previously proposed mechanisms of solar wind modulation of the dayside reconnection rate
- …