754 research outputs found

    Simulation benchmarks for low-pressure plasmas: capacitive discharges

    Get PDF
    Benchmarking is generally accepted as an important element in demonstrating the correctness of computer simulations. In the modern sense, a benchmark is a computer simulation result that has evidence of correctness, is accompanied by estimates of relevant errors, and which can thus be used as a basis for judging the accuracy and efficiency of other codes. In this paper, we present four benchmark cases related to capacitively coupled discharges. These benchmarks prescribe all relevant physical and numerical parameters. We have simulated the benchmark conditions using five independently developed particle-in-cell codes. We show that the results of these simulations are statistically indistinguishable, within bounds of uncertainty that we define. We therefore claim that the results of these simulations represent strong benchmarks, that can be used as a basis for evaluating the accuracy of other codes. These other codes could include other approaches than particle-in-cell simulations, where benchmarking could examine not just implementation accuracy and efficiency, but also the fidelity of different physical models, such as moment or hybrid models. We discuss an example of this kind in an appendix. Of course, the methodology that we have developed can also be readily extended to a suite of benchmarks with coverage of a wider range of physical and chemical phenomena

    Insights into the Kinetics of Supramolecular Comonomer Incorporation in Water

    Get PDF
    Multicomponent supramolecular polymers are a versatile platform to prepare functional architectures, but a few studies have been devoted to investigate their noncovalent synthesis. Here, we study supramolecular copolymerizations by examining the mechanism and time scales associated with the incorporation of new monomers in benzene-1,3,5-tricarboxamide (BTA)-based supramolecular polymers. The BTA molecules in this study all contain three tetra(ethylene glycol) chains at the periphery for water solubility but differ in their alkyl chains that feature either 10, 12 or 13 methylene units. C(10)BTA does not form ordered supramolecular assemblies, whereas C(12)BTA and C(13)BTA both form high aspect ratio supramolecular polymers. First, we illustrate that C(10)BTA can mix into the supramolecular polymers based on either C(12)BTA or C(13)BTA by comparing the temperature response of the equilibrated mixtures to the temperature response of the individual components in water. Subsequently, we mix C(10)BTA with the polymers and follow the copolymerization over time with UV spectroscopy and hydrogen/deuterium exchange mass spectrometry experiments. Interestingly, the time scales obtained in both experiments reveal significant differences in the rates of copolymerization. Coarse-grained simulations are used to study the incorporation pathway and kinetics of the C(10)BTA monomers into the different polymers. The results demonstrate that the kinetic stability of the host supramolecular polymer controls the rate at which new monomers can enter the existing supramolecular polymers

    Slope and amplitude asymmetry effects on low frequency capacitively coupled carbon tetrafluoride plasmas

    Get PDF
    We report investigations of capacitively coupled carbon tetrafluoride (CF4) plasmas excited with tailored voltage waveforms containing up to five harmonics of a base frequency of 5.5 MHz. The impact of both the slope asymmetry, and the amplitude asymmetry, of these waveforms on the discharge is examined by combining experiments with particle-in-cell simulations. For all conditions studied herein, the discharge is shown to operate in the drift-ambipolar mode, where a comparatively large electric field in the plasma bulk (outside the sheaths) is the main mechanism for electron power absorption leading to ionization. We show that both types of waveform asymmetries strongly influence the ion energy at the electrodes, with the particularity of having the highest ion flux on the electrode where the lowest ion energy is observed. Even at the comparatively high pressure (600 mTorr) and low fundamental frequency of 5.5 MHz used here, tailoring the voltage waveforms is shown to efficiently create an asymmetry of both the ion energy and the ion flux in geometrically symmetric reactors

    An assessment of the carbon balance of Arctic tundra:Comparisons among observations, process models, and atmospheric inversions

    Get PDF
    Although Arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO<sub>2</sub> and CH<sub>4</sub> could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990 and 2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of flux observations and inversion models indicate that the annual exchange of CO<sub>2</sub> between Arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that Arctic tundra has acted as a sink for atmospheric CO<sub>2</sub> in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Some of the process models indicate that this occurred because net primary production increased more in response to warming than heterotrophic respiration. Similarly, the observations and the applications of regional process-based models suggest that CH<sub>4</sub> emissions from Arctic tundra have increased from the 1990s to 2000s because of the sensitivity of CH<sub>4</sub> emissions to warmer temperatures. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that Arctic tundra was a sink for atmospheric CO<sub>2</sub> of 110 Tg C yr<sup>−1</sup> (uncertainty between a sink of 291 Tg C yr<sup>−1</sup> and a source of 80 Tg C yr<sup>−1</sup>) and a source of CH<sub>4</sub> to the atmosphere of 19 Tg C yr<sup>−1</sup> (uncertainty between sources of 8 and 29 Tg C yr<sup>−1</sup>). The suite of analyses conducted in this study indicate that it is important to reduce uncertainties in the observations, process-based models, and inversions in order to better understand the degree to which Arctic tundra is influencing atmospheric CO<sub>2</sub> and CH<sub>4</sub> concentrations. The reduction of uncertainties can be accomplished through (1) the strategic placement of more CO<sub>2</sub> and CH<sub>4</sub> monitoring stations to reduce uncertainties in inversions, (2) improved observation networks of ground-based measurements of CO<sub>2</sub> and CH<sub>4</sub> exchange to understand exchange in response to disturbance and across gradients of climatic and hydrological variability, and (3) the effective transfer of information from enhanced observation networks into process-based models to improve the simulation of CO<sub>2</sub> and CH<sub>4</sub> exchange from Arctic tundra to the atmosphere

    Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    Get PDF
    International audienceThe charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15--20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity

    Effect of gas properties on the dynamics of the electrical slope asymmetry effect in capacitive plasmas : comparison of Ar, H2 and CF4

    Get PDF
    Tailored voltage excitation waveforms provide an efficient control of the ion energy (through the electrical asymmetry effect) in capacitive plasmas by varying the 'amplitude' asymmetry of the waveform. In this work, the effect of a 'slope' asymmetry of the waveform is investigated by using sawtooth-like waveforms, through which the sheath dynamic can be manipulated. A remarkably different discharge dynamic is found for Ar, H2, and CF4 gases, which is explained by the different dominant electron heating mechanisms and plasma chemistries. In comparison to Argon we find that the electrical asymmetry can even be reversed by using an electronegative gas such as CF4. Phase resolved optical emission spectroscopy measurements, probing the spatiotemporal distribution of the excitation rate show excellent agreement with the results of particle-in-cell simulations, confirming the high degree of correlation between the excitation rates with the dominant heating mechanisms in the various gases. It is shown that, depending on the gas used, sawtooth-like voltage waveforms may cause a strong asymmetry

    Supramolecular Double Helices from Small C-3-Symmetrical Molecules Aggregated in Water

    Get PDF
    Supramolecular fibers in water, micrometers long and several nanometers in width, are among the most studied nanostructures for biomedical applications. These supramolecular polymers are formed through a spontaneous self-assembly process of small amphiphilic molecules by specific secondary interactions. Although many compounds do not possess a stereocenter, recent studies suggest the (co)existence of helical structures, albeit in racemic form. Here, we disclose a series of supramolecular (co)polymers based on water-soluble benzene-1,3,5-tricarboxamides (BTAs) that form double helices, fibers that were long thought to be chains of single molecules stacked in one dimension (1D). Detailed cryogenic transmission electron microscopy (cryo-TEM) studies and subsequent three-dimensional-volume reconstructions unveiled helical repeats, ranging from 15 to 30 nm. Most remarkable, the pitch can be tuned through the composition of the copolymers, where two different monomers with the same core but different peripheries are mixed in various ratios. Like in lipid bilayers, the hydrophobic shielding in the aggregates of these disc-shaped molecules is proposed to be best obtained by dimer formation, promoting supramolecular double helices. It is anticipated that many of the supramolecular polymers in water will have a thermodynamic stable structure, such as a double helix, although small structural changes can yield single stacks as well. Hence, it is essential to perform detailed analyses prior to sketching a molecular picture of these 1D fibers

    Carbon Fiber Composites of Pure Polypropylene and Maleated Polypropylene Blends Obtained from Injection and Compression Moulding

    Get PDF
    A comparative study of the mechanical performance of PP and PP/PP-g-MAH blends reinforced with carbon fibre (CF) obtained by two different moulding techniques is presented. Three filler contents were used for fabricating the composites: 1, 3, and 5 pph (parts per hundred). The crystallisation behaviour of the composites was studied by differential scanning calorimetry. Morphological and structural features of these samples were observed by atomic field microscopy and Fourier-transform infrared spectroscopy, respectively. Mechanical properties of the injection and compression moulded composites were evaluated by means of tensile and impact resistance tests. The fracture surface of the impacted samples was observed by scanning electron microscopy. The processing method had a noticeable effect on the results obtained in these tests. Young’s modulus was enhanced up to 147% when adding 5 pph CF to a PP matrix when processed by compression moulding. Addition of PP-g-MAH and CF had a favourable effect on the tensile and impact strength properties in most samples; these composites showed improved performance as the filler content was increased
    corecore