3 research outputs found

    A complex environment around Cir X-1

    Get PDF
    We present the results of an archival 54 ks long Chandra observation of the peculiar source Cir X--1 during the phase passage 0.223-0.261. A comparative analysis of X-ray spectra, selected at different flux levels of the source, allows us to distinguish between a very hard state, at a low countrate, and a brighter, softer, highly absorbed spectrum during episodes of flaring activity, when the unabsorbed source luminosity is about three times the value in the hard state. The spectrum of the hard state clearly shows emission lines of highly ionized elements, while, during the flaring state, the spectrum also shows strong resonant absorption lines. The most intense and interesting feature in this latter state is present in the Fe K alpha region: a very broadened absorption line at energies ~ 6.5 keV that could result from a smeared blending of resonant absorption lines of moderately ionized iron ions (Fe XX - Fe XXIV). We also observe strong resonant absorption lines of Fe XXV and Fe XXVI, together with a smeared absorption edge above 7 keV. We argue that the emitting region during the quiescent/hard state is constituted of a purely photo-ionized medium, possibly present above an accretion disk, or of a photo-ionized plasma present in a beamed outflow. During the flaring states the source undergoes enhanced turbulent accretion that modifies both the accretion geometry and the optical depth of the gas surrounding the primary X-ray source.Comment: Accepted for publication in Ap

    LOFT: the Large Observatory For X-ray Timing

    Get PDF
    The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m[superscript 2] peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO’s to yearlong transient outbursts. In this paper we report the current status of the project
    corecore