676 research outputs found

    Migration Flows and Intra-Industry Trade Adjustments.

    Get PDF
    In this paper we analyse the link between trade and migration. Focusing in the experience of Spain, we relate a marginal index of intra-industry trade with the stock of foreign workers - classified according to their country of origin and their situation in the Spanish labour market. We focus on the possibility that existing networks of foreign workers and their connections with their countries of origin could stimulate trade with the host country. Our results show a significant impact of the number of immigrants with work permits on intra-industry trade adjustment. However, this impact being positive or negative depends on whether foreign workers are employees or self-employed, the duration of the work permits and the type of job they occupy.migration, intra-industry trade, networks.

    Carbon Dioxide Production in Animal Houses: A literature review

    Get PDF
    This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers. Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20 oC) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass. The carbon dioxide production is e.g. less than 185 litres per hour per hpu for weaners and broilers and higher for growing finishing pigs and cows. The analyses show that the measured carbon dioxide production is higher in full scale animal houses than measured in respiration chambers, due to differences in manure handling. In respiration chambers there is none or very limited carbon dioxide contribution from manure; unlike in animal houses, where a certain carbon dioxide contribution from manure handling may be foreseen. Therefore, it is necessary to make a correction of data from respiration chambers, when used in full scale animal buildings as basis for estimation of ventilation flow. Based on the data reviewed in this study, we recommend adding 10% carbon dioxide production to the laboratory based carbon dioxide production for animal houses with slatted or solid floors, provided that indoor manure cellars are emptied regularly in a four weeks interval. Due to a high and variable carbon dioxide production in deep straw litter houses and houses with indoor storage of manure longer than four weeks, we do not recommend to calculate the ventilation flow based on the carbon dioxide concentration for these houses

    High order structure preserving explicit methods for solving linear-quadratic optimal control problems

    Full text link
    [EN] We consider the numerical integration of linear-quadratic optimal control problems. This problem requires the solution of a boundary value problem: a non-autonomous matrix Riccati differential equation (RDE) with final conditions coupled with the state vector equation with initial conditions. The RDE has positive definite matrix solution and to numerically preserve this qualitative property we propose first to integrate this equation backward in time with a sufficiently accurate scheme. Then, this problem turns into an initial value problem, and we analyse splitting and Magnus integrators for the forward time integration which preserve the positive definite matrix solutions for the RDE. Duplicating the time as two new coordinates and using appropriate splitting methods, high order methods preserving the desired property can be obtained. The schemes make sequential computations and do not require the storrage of intermediate results, so the storage requirements are minimal. The proposed methods are also adapted for solving linear-quadratic N-player differential games. The performance of the splitting methods can be considerably improved if the system is a perturbation of an exactly solvable problem and the system is properly split. Some numerical examples illustrate the performance of the proposed methods.The author wishes to thank the University of California San Diego for its hospitality where part of this work was done. He also acknowledges the support of the Ministerio de Ciencia e Innovacion (Spain) under the coordinated project MTM2010-18246-C03. The author also acknowledges the suggestions by the referees to improve the presentation of this work.Blanes Zamora, S. (2015). High order structure preserving explicit methods for solving linear-quadratic optimal control problems. Numerical Algorithms. 69:271-290. https://doi.org/10.1007/s11075-014-9894-0S27129069Abou-Kandil, H., Freiling, G., Ionescy, V., Jank, G.: Matrix Riccati equations in control and systems theory. Basel, Burkhäuser Verlag (2003)Al-Mohy, A.H., Higham, N.J.: Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators. SIAM. J. Sci. Comp. 33, 488–511 (2011)Anderson, B.D.O., Moore, J.B.: Optimal control: linear quadratic methods. Dover, New York (1990)Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical solutions of boundary value problems for ordinary differential equations. Prentice-Hall, Englewood Cliffs (1988)Bader, P., Blanes, S., Ponsoda, E.: Structure preserving integrators for solving linear quadratic optimal control problems with applications to describe the flight of a quadrotor. J. Comput. Appl. Math. 262, 223–233 (2014)Basar, T., Olsder, G.J.: Dynamic non cooperative game theory, 2nd Ed, SIAM, Philadelphhia (1999)Blanes, S., Casas, F.: On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Num. Math. 54, 23–37 (2005)Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Numer. Math. 68, 58–72 (2013)Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009)Blanes, S., Casas, F., Ros, J.: High order optimized geometric integrators for linear differential equations. BIT 42, 262–284 (2002)Blanes, S., Diele, F., Marangi, C., Ragni, S.: Splitting and composition methods for explicit time dependence in separable dynamical systems. J. Comput. Appl. Math. 235, 646–659 (2010)Blanes, S., Moan, P.C.: Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrm methods. J. Comput. Appl. Math. 142, 313–330 (2002)Blanes, S., Ponsoda, E.: Magnus integrators for solving linear-quadratic differential games. J. Comput. Appl. Math. 236, 3394–3408 (2012)Brif, C., Chakrabarti, R., Rabitz, H.: Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008(68pp) (2010)Cruz, J.B., Chen, C.I.: Series Nash solution of two person non zero sum linear quadratic games. J. Optim. Theory Appl. 7, 240–257 (1971)Dieci, L., Eirola, T.: Positive definitness in the numerical solution of Riccati differential quations. Numer. Math. 67, 303–313 (1994)Engwerda, J.: LQ dynamic optimization and differential games. Wiley (2005)Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2nd edition). Springer Series in Computational Mathematics, 31. Springer-Verlag (2006)Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–286 (2010)Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1985)Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie group methods. Acta Numerica 9, 215–365 (2000)Iserles, A., Nørsett, S.P.: On the solution of linear differential equations in Lie groups. Phil. Trans. R. Soc. Lond. A 357, 983–1019 (1999)Jódar, L., Ponsoda, E.: Non-autonomous Riccati-type matrix differential equations: existence interval, construction of continuous numerical solutions and error bounds. IMA. J. Num. Anal. 15, 61–74 (1995)Jódar, L., Ponsoda, E., Company, R.: Solutions of coupled Riccati equations arising in differential games. Control. Cybern. 24, 117–128 (1995)Kaitala, V, Pohjola, M. In: Carraro, Filar (eds.) : Sustainable international agreement on greenhouse warming. A game theory study. Control and Game Theoretic Models of the Environment, pp 67–87. Birkhauser, Boston (1995)Keller, H.B.: Numerical solution of two point boundary value problems. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 24. SIAM, Philadelphia (1976)McLachlan, R.I.: Composition methods in the presence of small parameters. BIT 35, 258–268 (1995)McLachlan, R.I., Quispel, R.: Splitting Methods. Acta Numer. 11, 341–434 (2002)Moler, C.B., Van Loan, C.F.: Nineteen Dubious Ways to Compute the Exponential of a Matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)Na, T.Y.: Computational methods in engineering boundary value problems. In: Mathematics in Science and Engineering, Vol. 145. Accademic Press, New York (1979)Palao, J.P., Kosloff, R.: Quantum computing by an optimal control algorithm for unitry transformations. Phys. Rev. Lett. 28 (2002)Peirce, A.P., Dahleh, M.A., Rabitz, H.: Optimal control of quantum-mechanical systems: existence, numerical approximation, and applications. Phys. Rev. A 37, 4950–4967 (1988)Reid, W.T.: Riccati Differential Equations. Academic, New York (1972)Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Software 24, 130–156 (1998)Speyer, J.L., Jacobson, D.H.: Primer on optimal control theory. SIAM, Philadelphia (2010)Starr, A.W., Ho, Y.C.: Non-zero sum differential games. J. Optim. Theory and Appl 3, 179–197 (1969)Zhu, W., Rabitz, H.: A rapid monotonically convergent iteration algorithm for quantum optimal control ever the expectation value of a positive definite operator. J. Chem. Phys. 109, 385–391 (1998

    A rapid method for the in-field analysis of amphetamines employing the agilent bioanalyzer

    Full text link
    This paper reports the first analysis of small molecules on the Agilent bio-analyser. The Bioanalyzer is a commercial lab-on-a-chip instrument designed for the analysis of DNA and proteins. We demonstrate that the instrument is suitable for analyses beyond its design specifications. Amphetamine, methamphetamine and pseudoephedrine were separated with a 50 mM borate and 50 mM sodium dodecyl sulfate (SDS) buffer at pH 9.66. The analytes were derivatised with fluorescein isothiocyanate (FITC) in 3 minutes with a heating block set at 90°C, reducing the typical time of 12 hours required for amine-labelling. Analytes were detected by LED-induced fluorescence (λ = 525 nm and λ = 470 nm). Furthermore, five amphetamine analogues were baseline separated within 1 minute. An average limit of detection of 0.6 mg mL -1 and limit of quantification of 2.2μ mg mL-1 were obtained for all analytes. These rapid analyses in conjunction with a fast and reliable derivatisation method with FITC demonstrate its potential use for the in-field analysis of samples of forensic significance. © 2011 The Royal Society of Chemistry

    A Fundamental Theorem on the Structure of Symplectic Integrators

    Full text link
    I show that the basic structure of symplectic integrators is governed by a theorem which states {\it precisely}, how symplectic integrators with positive coefficients cannot be corrected beyond second order. All previous known results can now be derived quantitatively from this theorem. The theorem provided sharp bounds on second-order error coefficients explicitly in terms of factorization coefficients. By saturating these bounds, one can derive fourth-order algorithms analytically with arbitrary numbers of operators.Comment: 4 pages, no figure

    In-depth analysis of single-diode model parameters from manufacturer’s datasheet

    Get PDF
    The objective of this paper is to determine all the possible combinations of the five parameters of the single-diode model (SDM) of a photovoltaic panel when only the following three important points (remarkable points) of a IeV curve, namely, short circuit, maximum power and open circuit points, are available, usually from manufacturer’s datasheet. In this work, four of the five parameters of the SDM are expressed as explicit functions of the remaining one. Taking advantage of this, the monotony of these functions has been studied and the intervals where the corresponding parameters belong have been determined, that is, the domain of the parameters, in terms exclusively of the remarkable points. Using these functions, a unique SDM solution can be also easily determined if an extra data or equation is available. A possible application of this study is to validate if an extra equation is compatible with the set of equations obtained from the remarkable points. The results presented in this paper have been tested with a database gathering information of 8835 datasheets included in the Energy Commission’s Solar Equipment Lists. Comparisons have also been made with other works which have tried to obtain the SDM parameters only with datasheet information

    Detection of gunshot residues using mass spectrometry

    Full text link
    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the "gold standard" for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis. © 2014 Regina Verena Taudte et al

    New families of symplectic splitting methods for numerical integration in dynamical astronomy

    Get PDF
    We present new splitting methods designed for the numerical integration of near-integrable Hamiltonian systems, and in particular for planetary N-body problems, when one is interested in very accurate results over a large time span. We derive in a systematic way an independent set of necessary and sufficient conditions to be satisfied by the coefficients of splitting methods to achieve a prescribed order of accuracy. Splitting methods satisfying such (generalized) order conditions are appropriate in particular for the numerical simulation of the Solar System described in Jacobi coordinates. We show that, when using Poincar\'e Heliocentric coordinates, the same order of accuracy may be obtained by imposing an additional polynomial equation on the coefficients of the splitting method. We construct several splitting methods appropriate for each of the two sets of coordinates by solving the corresponding systems of polynomial equations and finding the optimal solutions. The experiments reported here indicate that the efficiency of our new schemes is clearly superior to previous integrators when high accuracy is required.Comment: 24 pages, 2 figures. Revised version, accepted for publication in Applied Numerical Mathematic

    A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed ÎĽpADs

    Full text link
    A new technique for the detection of explosives has been developed based on fluorescence quenching of pyrene on paper-based analytical devices (μPADs). Wax barriers were generated (150 °C, 5 min) using ten different colours. Magenta was found as the most suitable wax colour for the generation of the hydrophobic barriers with a nominal width of 120 μm resulting in fully functioning hydrophobic barriers. One microliter of 0.5 mg mL-1 pyrene dissolved in an 80 : 20 methanol-water solution was deposited on the hydrophobic circle (5 mm diameter) to produce the active microchip device. Under ultra-violet (UV) illumination, ten different organic explosives were detected using the μPAD, with limits of detection ranging from 100-600 ppm. A prototype of a portable battery operated instrument using a 3 W power UV light-emitting-diode (LED) (365 nm) and a photodiode sensor was also built and evaluated for the successful automatic detection of explosives and potential application for field-based screening. © 2013 The Royal Society of Chemistry
    • …
    corecore