1

Carbon Dioxide Production in Animal Houses: A literature review

S. Pedersen¹, V. Blanes-Vidal², H. Joergensen³, A. Chwalibog⁴, A. Haeussermann⁵ M.J.W. Heetkamp⁶ and A.J.A. Aarnink⁶

¹ Department of Agricultural Engineering, University of Aarhus, Denmark E-mail: <u>Soeren.pedersen@agrsci.dk</u>

² Faculty of Engineering, University of Southern Denmark

³ Department of Health, Welfare and Nutrition, University of Aarhus, Denmark

⁴ Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Denmark

⁵ Institute of Agricultural Engineering, Christian –Albrechts University of Kiel, Germany

⁶University of Wageningen, the Netherlands

ABSTRACT

This article deals with carbon dioxide production from farm animals; more specifically, it addresses the possibilities of using the measured carbon dioxide concentration in animal houses as basis for estimation of ventilation flow (as the ventilation flow is a key parameter of aerial emissions from animal houses). The investigations include measurements in respiration chambers and in animal houses, mainly for growing pigs and broilers.

Over the last decade a fixed carbon dioxide production of 185 litres per hour per heat production unit, hpu (i.e. 1000 W of the total animal heat production at 20 °C) has often been used. The article shows that the carbon dioxide production per hpu increases with increasing respiration quotient. As the respiration quotient increases with body mass for growing animals, the carbon dioxide production per heat production unit also increases with increased body mass. The carbon dioxide production is e.g. less than 185 litres per hour per hpu for weaners and broilers and higher for growing finishing pigs and cows.

The analyses show that the measured carbon dioxide production is higher in full scale animal houses than measured in respiration chambers, due to differences in manure handling. In respiration chambers there is none or very limited carbon dioxide contribution from manure; unlike in animal houses, where a certain carbon dioxide contribution from manure handling may be foreseen. Therefore, it is necessary to make a correction of data from respiration chambers, when used in full scale animal buildings as basis for estimation of ventilation flow. Based on the data reviewed in this study, we recommend adding 10% carbon dioxide production to the laboratory based carbon dioxide production for animal houses with slatted or solid floors, provided that indoor manure cellars are emptied regularly in a four weeks interval. Due to a high and variable carbon dioxide production in deep straw litter houses and houses with indoor storage of manure longer than four weeks, we do not recommend to calculate the ventilation flow based on the carbon dioxide concentration for these houses.

Keywords: Carbon dioxide, ventilation flow, animal heat production, balance equations, farm buildings

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

1. BACKGROUND

Ventilation of animal houses should be based on maintaining desired thermal conditions and air quality. This requires no build up of heat and/or gases in the inside air. At equilibrium (steady state) this means that emission of a gas of must equal the amount in the outgoing ventilated air. Estimation of the gas emission needs knowledge on both the air exchange to the environment and the gas concentration in the animal house. Precise air exchange measurements can be performed by measuring nozzles or measuring fans installed in the outlets of the animal house, but these are time-consuming and expensive methods and they are to some extends limited to mechanically ventilated animal houses. Therefore, there is a big interest in finding alternative methods for estimating the ventilation flow in full scale livestock buildings. One possibility is e.g. to use tracer gases (Freon 134a), where a correlation of 0.89 was found (Müller, H-J et al. 2006) in respect to wheel anemometer measurements. Another possibility is to estimate the air exchange rate by performing a carbon dioxide (CO_2) balance in the house. In the CO_2 balance, an accurate estimation of the CO_2 production in the building is crucial. The total CO₂ production includes CO₂ produced by the animals and CO₂ emitted from the manure. CO_2 production from the animal can be derived from its energy metabolism rate, which is related to feeding level and nutrient composition of the diet (Brouwer, 1965). In animal houses where the manure is not stored in the barn for a long period (e.g. slatted houses with regular emptying of manure pits) the CO_2 production from the manure handling system is small compared to the CO₂ production from animals. However, in animal houses with deep litter (i.e animal houses where the depth of the litter is > 0.5m), the CO₂ production from the deep litter can be considerable (Jeppsson 2000, 2002)

The structure of this paper is as follows. First, we present a theoretical approach for calculating the animals CO_2 emission based on indirect calorimetric measurements (RQ method). Next, we provide an overview of research studies dealing with the CO_2 production at house level and we present a summary of published data on animal CO_2 production measured in respiration chambers. We compare the results of the different studies and we discuss the current state of knowledge of the CO_2 production in animal houses, concluding by providing some recommendations. Third, we discuss the importance of considering the diurnal variation of CO_2 production. Finally, we present the equations for calculating the ventilation flow based on measured CO_2 production.

2. A THEORETICAL APPROACH: THE RQ METHOD

An equation for estimating animal heat production on diurnal basis (HE, kJ) was set up by Brouwer (1965), based on oxygen consumption (O_2 , 1), carbon dioxide production (CO_2 , 1), urinary nitrogen (N, g) and methane production (CH_4 , 1), as follows (Eq 1):

$$HE_{kJ} = 16.18 O_2 + 5.02 CO_2 - 5.99 N - 2.17 CH_4 \quad (kJ)$$
(1)

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

By using the Brouwer's equation (Eq 1), precise estimations of heat production can be carried out under laboratory conditions in the respiration chambers. However, under practical conditions and full scale production, only the CO_2 production can be measured. An estimation of RQ (the ratio between the CO_2 production and O_2 consumption during respiration) can be made based on the nutrient composition of the diet (protein, lipids and carbohydrates) and from the composition of the gained tissues in the animal (protein and fat) (see Brouwer, 1965). If animals are fed close to maintenance the RQ will be low, but it will increase with higher feed intake, e.g. the RQ value for pregnant sows with low feed intake is lower than for lactating sows. The RQ varies between 0.9 and 1.2 (Van Ouwerkerk and Pedersen, 1994).

Eq. 1 can be modified by substituting the oxygen consumption O_2 in Eq. 1 by the term CO_2/RQ and expressing the HE in terms of kW (as it is commonly used for calculations of animal heat production in relation to heating and ventilating animal houses), resulting in Eq. 2:

$$HE_{kW} = \frac{1}{3.6} \cdot \left(16.18 \cdot \frac{CO_2}{RQ} + 5.02 \cdot CO_2 - 5.99 \cdot N' + 2.17 \cdot CH_4 \right), \, kW$$
(2)

where $CO_2^{'}$ and $CH_4^{'}$ are expressed in terms of m³/h, and N in g/h.

For one hpu (where 1 hpu is equivalent to 1000 W of total heat production at 20°C), Eq2 can be transformed to:

$$RQ = \frac{16.18 \cdot CO_2}{3.6 - 5.02 \cdot CO_2 + 5.99 \cdot N + 2.17 \cdot CH_4}$$
(3)

According to the literature (CIGR, 2002, the CO_2 production per hpu has over the last decade often been set to 0.185 m³h⁻¹hpu⁻¹. In the case of fattening pigs, a urinary nitrogen production of 0.010 kg h⁻¹ hpu⁻¹ and a CH₄ production of 0.24x10⁻³ kg h⁻¹ hpu⁻¹ can also be obtained from the literature (Blanes-Vidal et al., 2008). Using those data in Eq 3 we get:

$$RQ = \frac{16.18 \cdot 0.185}{3.6 - 5.02 \cdot 0.185 + 5.99 \cdot 0.010 + 2.17 \cdot 0.00024} = 1.096$$
(4)

Solving Eq. 4, results in a CO_2 production of 0.185 m³h⁻¹hpu⁻¹ corresponding to an RQ of about 1.1, which is a typical value of RQ for fattening pigs (Noblet et al., 1999; Van Ouwerkerk and Pedersen, 1994).

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

3. OVERVIEW OF STUDIES ON CARBON DIOXIDE PRODUCTION AT HOUSE LEVEL

The interest for using the animal carbon dioxide (CO_2) production to estimate the air exchange rate from CO₂ balances in the house was awaked in the seventies. In the period 1977-84, the literature on animal heat and moisture production was examined by the CIGR (Internationale Commission du Génie Rural) working group, and the outcome was published in by CIGR (1984). In this report, the CO_2 production was determined as $0.163 \text{ m}^{3}\text{h}^{-1}\text{hpu}^{-1}$. In 1994, the CO₂ production was revised and it was adjusted to the range between 0.17 and 0.20 m³h⁻¹hpu⁻¹ (Ouwerkerk and Pedersen, 1994). In that work it was also stressed that the animal activity is an important factor to take into account when calculating CO₂ balances over periods shorter than 24 hrs. Later studies have confirmed the necessity of taking the animal activity into account. One of those studies was a Swedish investigation with layers (Wachenfelt et al., 2001) that showed that the CO₂ production during the night periods was only 66% of the production during day periods. Comprehensive investigations on emission from animal houses were performed from 1992-1996 (EU project No. PL900703), including animal houses in Great Britain, Netherlands, Germany and Denmark, where information on the ventilation flow was needed. Due to the big number of animal houses included in the investigation, it was not possible to provide the houses with direct measurements of ventilation flow by nozzles or measuring fans. Therefore the heat, moisture and CO₂ balances in cattle, pigs and poultry houses were calculated in order to make an indirect calculation of the ventilation flow. The procedure was to formulate three balance equations for each house; a temperature balance, a moisture balance and a CO_2 balance, each expressing the ventilation flow. These three equations must theoretically result in the same ventilation flow for a certain house. The equations were based on data for animal heat and moisture production from CIGR (1984). Firstly, the temperature balance and the moisture balance equation were brought to give the same ventilation flow by adjusting the animal latent and sensible heat for evaporation of water from feed and manure. Secondly, that ventilation flow was used to calculate the CO_2 production by the CO_2 balance equation. The results showed that the CO₂ production on diurnal basis (average of 24 h period) was 0.185 m³h⁻¹hpu⁻¹ for dairy cows, growing pigs and layers (Pedersen et al, 1998). That is about 13% higher than that estimated by CIGR (1984).

Danish measurements of broiler heat and moisture production showed a CO_2 production of 0.182 m³ m³h⁻¹hpu⁻¹ (Pedersen and Thomsen, 2000), which was in good agreement with 0.185 m³h⁻¹hpu⁻¹. Furthermore, a later Danish investigation with fattening pigs showed a CO_2 production of 0.185 m³h⁻¹hpu⁻¹ (Sousa and Pedersen, 2003). However, Blanes and Pedersen (2005), found that the CO_2 production was 0.201 m³h⁻¹hpu⁻¹. A Ph.D study (Haeussermann, 2006, Haeussermann et al., 2007ab) resulted in a CO_2 production for growing pigs of 0.233 m³h⁻¹hpu⁻¹ between day 10 and 28 in the growing finishing house, averaged over four growing periods in a full scale experimental house (Table 1). It increases by about 18% in respect of the above mentioned value during the ongoing growing days. The high CO_2 production compared to the other referred experiments is

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

explained mainly by the accumulated amount of manure, which was stored indoor until the end of each fattening period. Likewise, high performance of the pigs, listed in Table 1 for growing finishing pigs, influenced CO_2 production due to an increased RQ.

In Belgium, a number of measurements were carried out over a decade under different production conditions for pigs (Nicks et al., 2003, 2004a,b, 2005; Philippe et al., 2006, 2007). Based on the measured CO₂ production and the total heat production calculated in accordance with CIGR (2002), the CO₂ production is expressed in terms of $m^3 h^{-1} hpu^{-1}$ as shown in Table 1. The results show a big variation among the different experiments and it also shows that the CO₂ production per hpu is much lower for weaning pigs than for growing finishing pigs.

Livestock	Bedding Type	Live weight Kg	Temp °C	Daily gain kg/day	CO_2 production $m^3 h^{-1} hpu^{-1}$	Reference
Weaning	Straw	12.9	23.7	0.39	0.173	Nicks et al.
Pigs	Sawdust	13.0	23.0	0.40	0.178	(2003)
	Slatted Straw	12.3 12.3	26.4 23.9	0.39 0.39	0.122 0.130	Nicks et al. (2004a)
	Slatted	11.8	24.2	0.39	0.137	Nicks et al.
	Sawdust	11.8	22.6	0.39	0.168	(2005)
Growing finishing Pigs	Straw Sawdust	67.0 68.6	20.0 19.1	0.76 0.79	0.151 0.149	Nicks et al. (2004b)
	Straw	70.2	21.8	0.74	0.181	Philippe et
	Straw	67.9	21.2	0.70	0.178	al.(2006)
	Slatted Straw	67.8 67.0	20.5 20.6	0.73 0.72	0.202 0.230	Philippe et al.(2007)
Growing finishing Pigs	Slatted	43.0 62.0 80.0 97.0	21.5 21.5 19.9 18,9	0.84 0.91 0.83 0.73	0,233 0,266 0,282 0,282	Haeussermann (2006)

 Table 1. Measured CO2 production in animal houses from Belgium and German research studies in full scale experimental pig houses

Table 2 shows results from different sources, including cattle, pigs and poultry.

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

Livestock	Experimental setup	CO_2 production, m ³ h ⁻¹ hpu ⁻¹	Reference
Cattle and pigs	Commercial farm	0.17 - 0.20	Van Ouwerkerk and Pedersen (1994)
Cattle, pigs and poultry	Commercial farm	0.185	Pedersen et al. (1998)
Pigs			
Fattening pigs	Commercial farm	0.173 (animals) 0.232 $(total)^{1}$	Ni et al. (1999)
Fattening pigs	Full scale experimental farm	0.185	Sousa and Pedersen (2004)
Fattening pigs	Full scale experimental farm	0.201	Blanes and Pedersen (2005)
Fattening pigs	Full scale experimental farm	0.178 - 0.325 ²⁾	Haeussermann (2006)
Poultry			
Broilers in straw bedding	Experimental farm	0.182	Pedersen and Gaardbo-Thomsen (2000)
Laying hens in cages	Commercial farm	0.137 (light) 0.191 (dark)	Li et al. (2006)

Table 2. CO₂ production in animal houses, different sources.

¹⁾ Partial slatted floor. ²⁾ Depending on age of pigs, pig performance and manure amount

4. CARBON DIOXIDE PRODUCTION MEASURED IN RESPIRATION CHAMBERS

Table 3, 4 and 5 shows the CO_2 production from different types of animals (e.g. different species and production conditions) based on experiments performed in respiration chambers in Denmark and the Netherlands.

Animal	Year	N°	Temp	LW	CO_2	RQ	HE	CO ₂
		annnais			1		1	production
			°С	Kg	1 d-1		kJ d⁻¹	m [°] h ⁻ 'hpu ⁻ '
Pigs	1)2001	54	20	30.7	514	1.05	10486	0.177
Pigs	²⁾ 2004	32	18	54.6	911	1.10	17855	0,184
Sheeps	³⁾ 2004	27	16-18	77.8	471	0.92	10620	0.160
Broilers								
1.week	⁴⁾ 2004	16	30-28	0.074	4.26	0.99	90.8	0.169
2.week			28-24	0.172	9.84	0.89	230	0.154
3.week			24-20	0.334	17.8	0.93	399	0.161
				Old investiga	tions			
Laying						0.81-		
hens	⁵⁾ 1985	204	17-21	1.53-1.97	35.2-43.5	1.01	767-900	0.170
Pigs	⁶⁾ 1984	28	(18)	20	343	1.00	6986	0.170
				120	977	1.00	20419	0.196

Table 3. CO₂ production (University of Copenhagen, Denmark).

¹Chwalibog et al. 2004, ²Hansen et al. 2007, ³Kiani et al. 2007. ⁴Chwalibog et al. 2004, ⁵Chwalibog,1985, ⁶Thorbek et al.,1984.

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

Animal	Year	N°	Temp	LW	CO_2	RQ	HE	CO ₂
		animais	00	1	1 1-1	-	1 7 1-	production
			C	kg	l d '		kJ d	m ^c h ^c hpu ^c
Piglets	1)2007	12	27	4.9	94.3	0.86	2240	0.152
Growing	²⁾ 1996	12	13	77	1049	1.08	20600	0.183
pigs	²⁾ 1996	12	23	86	956	1.16	18140	0.190
	³⁾ 1996	56	21	58	676	1.02	14040	0.173
	⁴⁾ 1997	86	20	92	826	1.01	17440	0.171
	⁵⁾ 1998	30	20	60	707	1.04	14440	0.176
	⁶⁾ 2001	27	20	63	742	1.04	15200	0.176
	⁷⁾ 2004	32	20	51	824	1.17	16440	0.180
	⁸⁾ 2007	16	19	90	856	1.11	16610	0.186
Sows,	⁹⁾ 2001	12	17	288	1350	1.17	30080	0.162
pregnant	¹⁰⁾ 2001	36	20	227	1125	0.95	24180	0.167
	¹¹⁾ 2002	34	20	201	1173	0.67	24840	0.170
Sows,	¹²⁾ 2004	24	21	206	1762	1.01	36930	0.172
lactating				+43 (pigs)				
Sows, dry	¹³⁾ 2007	18	18	208	1077	0.96	23380	0.166
Chickens	¹⁴⁾ 1990	120	22	1.02	37.9	1.04	780	0.175
(Broilers)	¹⁵⁾ 1996	162	24	0.91	34.3	0.99	730	0.169
	¹⁶⁾ 2001	24	23	0.88	31.1	0.92	700	0.160
	17)2006	39	25	0.83	28.7	0.92	640	0.161

 Table 4. CO₂ production (University of Aarhus, Denmark)

¹⁾Theil et al., 2007, ²⁾Jørgensen et al., 1996c, ³⁾Jørgensen et al., 1996a, ⁴⁾Jørgensen et al., 1997, ⁵⁾Jørgensen, 1998, ⁶⁾Jørgensen et al., 2001, ⁷⁾Wang et al., 2004., ⁸⁾Jørgensen et al., 2007, ⁹⁾Olesen et al., 2001, ¹⁰⁾Jørgensen et al., 2001, ¹¹⁾Theil et al., 2002, ¹²⁾Theil et al., 2004, ¹³⁾Jørgensen et al., 2007, ¹⁴⁾Jørgensen et al., 1996b, ¹⁶⁾Zhao et al., 2001, ¹⁷⁾Zheng et al, 2006.

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

Animal	Year	N°	Temp	LW	CO ₂	RQ	HE	CO ₂ production
		animals	°C	kg	1 d ⁻¹		kJ d ⁻¹	m ³ h ⁻¹ hpu ⁻¹
Veal calve	¹⁾ 2006	1	18	145	1072	0.88	25042	0.154
Veal calve	²⁾ 2006	1	18	152	1174	0.86	28033	0.151
Cows	³⁾ 2007	2	18	584	6148	1.06	123802	0.179
Cows	⁴⁾ 2007	2	16	560	6049	1.02	125100	0.174
Cows	5)	2	16	553	5856	1.08	116225	0.181
Piglet	6)	3	25	10.6	169	0.98	3628	0.168
Piglet	7)	2	22	11.9	188	0.97	4083	0.166
Piglet	8)	5	20	28	394	0.98	8486	0.167
Growing pigs	⁹⁾ 2001	1	20	53	580	0.97	12631	0.165
Growing pigs	10)	7	20	46	533	0.99	11415	0.168
Growing pigs	11)	14	20	51	581	0.99	12416	0.169
Growing pigs	¹²⁾ 2005	10	22	66	792	1.05	16117	0.177
Growing pigs	13)	14	20	34	438	0.99	9346	0.169
Growing pigs	¹⁴⁾ 2008	12	20	44	588	0.99	12513	0.169
Sow	¹⁵⁾ 2001	6	20	229	1196	0.96	26112	0.165
Sow	¹⁶⁾ 2004	3	20	172	924	0.94	20511	0.162
Broilers	17)	39	18	1.7	58	0.95	1275	0.165
Layers	¹⁸⁾ 2000	6	21	2.4	43	0.88	1012	0.155
Layers	¹⁹⁾ 2006	8	22	1.6	28	0.97	613	0.164
Young layer	20)	10	21	1.0	32	0.94	715	0.161
Young layer	²¹⁾ 2002	10	21	0.6	22	0.96	486	0.162

Table 5 CO₂ production (University of Wageningen, the Netherlands)

¹⁾ Borne, J.J.G.C. van den et al., 2006a. ²⁾ Borne, J.J.G.C. van den, 2006b. ³⁾ Straalen, W.M. et al., 2007.
⁴⁾ Knegsel, A.T.M. et al., 2007. ^{5, 6, 7 and 8)} Unpublished. ⁹⁾ Gerrits, W.J.J. et al., 2001. ^{10 and 11)} Unpublished.
¹²⁾ Huynh Thi Thanh Thuy et al., 2005. ¹³⁾ Unpublished. ¹⁴⁾ Bolhuis, J. E.et al., Accepted for publication.
¹⁵⁾ Rijnen-MMJA et al. 2001. ¹⁶⁾ Geverink, N.A. et al, 2004. ¹⁷⁾ Unpublished. ¹⁸⁾ Mashaly-MM et al., 2000.
¹⁹⁾ Eerden, E. van et al., 2006. ²⁰⁾ Unpublihed. ²¹⁾ Parmentier et al., 2002.

5. RELATION BETWEEN RQ AND THE CO₂ PRODUCTION, BASED ON DATA FROM RESPIRATION CHAMBERS

Figures 1, 2 and 3 shows the relation between RQ and the CO_2 production measured in respiration chambers in Denmark (DK) and the Netherlands (NL) for cattle, pigs and poultry from respiration chambers (based on Tables 3, 4 and 5). The figures show that the

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

 CO_2 production increases nearly linear with the increase in RQ. These results correspond well with the general findings by Ouwerkerk and Pedersen, (1994), based on a literature review, where it was concluded that the CO_2 production increases from 0.17 to 0.20 m³ h⁻¹hpu⁻¹, when RQ increases from 1.0 to 1.2.

Figure 1. Relation between the CO₂ production and the RQ for cattle (Measured in respiration chambers in DK and NL).

Figure 2. Relation between the CO₂ production and the RQ for pigs (Measured in respiration chambers in DK and NL).

Figure 3. Relation between the CO₂ production and the RQ for poultry (Measured in respiration chambers in DK and NL).

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

As the CO_2 production per heat production unit increases with increasing respiration quotient and the respiration quotient increases with body mass, the CO_2 production per heat production unit also increases with body mass, as shown in Figure 4.

Based on Tables 1 to 5 on data from measurements in respiration chambers and full scale production facilities, it is possible to make a re-examination of the present factor of 185 litre $CO_2 \text{ m}^3 \text{ h}^{-1} \text{ hpu}^{-1}$.

In respiration chambers there is no or very limited CO₂ contribution from manure; unlike in animal houses, where a certain CO_2 contribution from manure handling may be foreseen. Therefore, it is necessary to make an adjustment of data from respiration chambers, when used in full scale animal buildings as basis for estimation of ventilation flow. Measurements in traditional pig houses over the last decade (Table 1 and 2) have shown a higher CO_2 for growing pigs than demonstrated in Figure 4. In Ouwerkerk and Pedersen (1994), the CO_2 contribution from the manure system is estimated to be 4%. Based on Table 1 to 5, it seems likely that the contribution from the manure system is higher and probably around 10% and above. The dotted line in Figure 4, represents such an empiric adjustment of the animal CO_2 production into the CO_2 production at house level. For animal houses with regularly removal of manure and good management, the contribution will probably be lower than 10%. Nevertheless, housings where manure is stored indoors over a considerable time period (more than 3 weeks) will result in a high CO_2 contribution from the manure, which can be up to a 35% (Ni et al., 1999b). Information about manure handling has to be included when estimating ventilation flow from such housings based on CO_2 production in order to get accurate values.

Figure 4. The CO₂ production in relation to body mass, measured in respiration chambers for growing pigs and estimated (dotted line) at house level.

Likewise, the adjustment of the total CO_2 production for animal houses with deep litter will not be discussed in this paper, because ventilation flow based on CO_2 production will always be uncertain for that type of production facilities, due to the important

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

contribution of the litter to the total CO_2 production at house level, and the fact that CO_2 production from litter is very difficult to estimate in full scale facilities under normal production conditions. In this respect, Swedish investigations (Jeppsson, 2000) showed that the CO_2 production from bedding was of the same size as from the animals themselves.

6. PROVISIONAL RECOMMENDATIONS FOR ANIMAL CO₂ PRODUCTION IN RESPECT TO SPECIES AND BODY MASS

Figures 1, 2 and 3 clearly shows that a lower CO_2 production per hpu may be expected from calves, pigs below 40 kg, sows and poultry, than from growing finishing pigs. Tables 1 to 3 are based on measurements in respiration chambers, where no contribution of CO_2 from manure handling can be expected, a guideline for the total CO_2 production in traditional animal houses, excl. deep litter, is presented in Table 6.

		and nouse leve	1			
		CO ₂ production,				
		m^3 l	h ⁻¹ hpu ⁻¹			
		Animal level	House level *)			
Cows						
Calves		0.155	0.170			
Dairy cows		0.180	0.200			
Pigs						
Weaners		0.170	0.185			
Growing pigs		0.185	0.200			
Sows		0.165	0.180			
Poultry						
Broilers	< 0.5	0.165	0.180			
	>0.5 kg	0.170	0.185			
Layers		0.165	0.180			
Sheeps		0.160	0.175			

 Table 6. Provisional values of CO2 production in different animal houses. Animal and house level

*) Including CO_2 production from manure (excl. deep litter and indoor manure storage over a time period longer than 3 weeks).

7. DIURNAL VARIATION OF CO₂ PRODUCTION

The results in Tables 1 to 5 are all based on daily average CO_2 dioxide production. During the 24 hour circle, the CO_2 production can show important variations when comparing different parts of the day, as shown in CIGR (2002). An example from this report is shown in Figure 5.

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

Figure 5. Diurnal activity as per cent of daily average for activity level, total heat production and CO_2 production for pigs fed ad lib. (Pedersen and Rom, 1998).

Figure 5 represents ad lib feeding with one typical maximum per day. In animal houses with restricted feeding twice a day, there are typical two maxima in the animal activity, one in the morning and one in the afternoon, but most of the diurnal variation in production level can be approximated by a sinusoidal function shown in Figure 6.

Figure 6, Sinusoidal function for standard correction of animal heat and CO₂ production (CIGR 2002)

8. CALCULATION OF VENTILATION FLOW BASED ON MEASURED CO₂ PRODUCTION

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

For livestock houses where CO₂ emission comes mainly from animals (e.g. without deep litter), the ventilation flow per hpu on a 24-hour basis can be calculated by means of the following equation:

Ventilation flow =
$$\frac{c}{(CO_2 indoors - CO_2 outdoors) \times 10^{-6}}$$
, m³ h⁻¹ hpu⁻¹ (5)

Where: c is CO₂ production, in m^3 per hour per hpu (See Table 6) (1hpu = 1 kW in total animal heat production at 20 °C) CO₂ concentration in- and outdoor, in ppm.

As shown in Figure 5, the production of CO_2 varies diurnally. Wrong results would therefore be obtained if the ventilation flow on an hourly basis was calculated by means of Equation (5), due to the fact that an increased measured CO_2 concentration will lead to a lower calculated ventilation flow if the value c is kept as a fixed value. On an hourly basis, the CO_2 production must be adjusted for animal activity. If the animal activity is measured, the adjustment of the CO_2 concentration can be made directly. Otherwise, the adjustment on an hourly basis can be done indirectly by means of the following equation:

Ventilation flow =
$$\frac{c \times (\text{relative animal activity, A})}{(CO_2 \text{ indoors} - CO_2 \text{ outdoors}) \times 10^{-6}}, \text{ m}^3 \text{ h}^{-1} \text{ hpu}^{-1}$$
(6)

The relative animal activity during 24 hrs can be approximated by the following sinusoidal equation:

$$A = 1 - a \times \sin[(2 \times \pi/24) \times (h + 6 - h_{\min})]$$

$$\tag{7}$$

where:

A = relative animal activity

a = constant (expressing the amplitude with respect to the average activity of the day, where average activity on 24h basis is set equal to 1)

 h_{min} = time of the day with minimum activity (hours after midnight)

For more precise calculations a model with two maxima per day could equations in CIGR, (2002) be used.

9. CONCLUSION

- The animal CO₂ production depends on the specie, the body mass and the feeding level, and ranges from about 0.16 to 0.21 $\text{m}^3\text{h}^{-1}\text{hpu}^{-1}$

- The animal CO₂ production is closely related to the respiratory quotient RQ (equal to the relation between CO₂ production and O₂ consumption), where the CO₂ production is around 0.16 $\text{m}^3\text{h}^{-1}\text{hpu}^{-1}$ at a RQ of 0.9 increasing to around 0.20 $\text{m}^3\text{h}^{-1}\text{hpu}^{-1}$, at a RQ of 1.2.

- Based on information about the specie, body mass and the feeding level, the ventilation flow can be approximated on 24 hour basis, based on the measured CO_2 concentration

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

within the animal house. However, in order to consider the production of CO_2 from the manure, this method requires a correction of the CO_2 production at animal level of about +10% (in houses where the manure is not stored from more than 3 weeks). The animal CO_2 production under normal farm conditions has normally a diurnal variation of +/-20%. Estimation of ventilation flow on hourly basis needs an adjustment for the diurnal variation in the CO_2 production.

10. REFERENCES

- Blanes-Vidal V., Hansen M. N., Pedersen S., Rom H. B. (2008). Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow. Agriculture, Ecosystems and Environment 124, 237-244.
- Blanes, V. and Pedersen, S. 2005. Ventilation Flow in Pig Houses Measured and Calculated by Carbon Dioxide Moisture and Heat Balance Equations. Biosystems Engineering. 92(4), 483-493
- Borne, J.J.G.C. van den; Verstegen, M.W.A.; Alferink, S.J.J.; Giebels, R.M.M.; Gerrits, W.J.J. (2006a). Effects of Feeding Frequency and Feeding Level on Nutrient. Utilition in Heavy Preruminant Calves. Journal of Dairy Science 89 (9). p. 3578 3586.
- Borne, J.J.G.C. van den; Verstegen, M.W.A.; Alferink, S.J.J.; Ass, F.H.M. van; Gerrits, W.J.J. (2006b). Synchronizing the Availability of Amino Acids and Glucose Decreases Fat Retention in Heavy Preruminant Calves. Journal of Nutrition 136 (8). p. 2181 2187.
- Bolhuis, J. E.; Van den Brand, H.; Staals, S. T. M.; Zandstra, T.; Alferink, S. J. J.; Heetkamp, M. J. W.; Gerrits, W. J. J. Effects of fermentable starch and strawenriched housing on energy partitioning of growing pigs. Animal (accepted for publication).
- Brouwer, E. 1965. Report of sub-committee on constants and factors. Pages 441–443 in *Energy Metabolism*. EAAP Publ. No. 11. Acad. Press, New York.
- CIGR (1984). Climatization of Animal Houses. Report 1 of Working Group, .Climatization of Animal Houses. Aberdeen, Scotland
- CIGR (2002). Climatization of Animal Houses Heat and Moisture Production at Animal and House Level. 4Th Report of CIGR Working Group. Horsens, Denmark
- Chwalibog, A., Tauson, A-H. & Thorbek, G. 2004. Diurnal rhythm in heat production and oxidation of carbohydrate and fat in pigs during feeding, starvation and refeeding. Journal of Animal Physiology and Animal Nutrition, 88, 266-274
- Chwalibog, A., Tauson, A-H. & Thorbek, G. 2004. Energy metabolism and substrate oxidation in pigs during feeding, fasting and re-feeding. Journal of Animal Physiology and Animal Nutrition, 88, 101-112
- Chwalibog, A., Tauson, A-H., Matthiesen, C., Ali, A., Thorhauge, K., Sawosz, E., Thorbek, G. 2004. Oxidation of carbohydrates and fat in newly hatched chickens. Journal of Animal and Feed Sciences. 13, Supl. 2, 3-6.
- Chwalibog, A. (1985) Studies on energy metabolism in laying hens. Report from

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

Statens Husdyrbrugsforsøg, 578, 139 pp. Thesis.

- Eerden, E. van; Brand, H. van den; Heetkamp, M.J.W.; Decuypere, E.; Kemp, B. (2006) Energy Partitioning and Thyroid Hormone Levels During Salmonella enteritidis Infections in Pullets with High or Low Residual Feed Intake. Poultry Science 85 (10). - p. 1775 - 1783.
- Gerrits, W.J.J.; Frijters, K.P.C.M.; Linden, J.M. van der; Heetkamp, M.J.W.; Zandstra, T.; Schrama, J.W. (2001). Effect of synchronizing dietary protein and glucose supply on nitrogen retention in growing pigs. Journal of Animal Science 79 (2001) suppl 1. - ISSN 0021-8812 - p. 321.
- Geverink, N.A.; Heetkamp, M.J.W.; Schouten, W.G.P.; Wiegant, V.M.; Schrama, J.W. (2004) Backtest type and housing condition of pigs influence energy metabolism. Journal of Animal Science 82 (4). - p. 1227 - 1233.
- Haeussermann, A. 2006. Stallklimaregelung und Emissionen Entwicklung und Evaluierung sensorgestützter komplexer Regelstrategien für die Mastschweinehaltung. PhD Dissertation, University of Hohenheim.
- Haeussermann, A., E. Hartung, T. Jungbluth, E. Vranken, J.-M. Aerts, and D. Berckmans (2007a). Cooling effects and evaporation characteristics of fogging systems in an experimental piggery. Biosystems Engineering 97: 395-405.
- Haeussermann, A., E. Vranken, J.M. Aerts, E. Hartung, T. Jungbluth, and D. Berckmans (2007b). Evaluation of control strategies for fogging systems in pig facilities. Transactions of the ASABE 50 (1): 265-274.
- Hansen, M. F., Chwalibog, A., Tauson, A.H. 2007. Influence of different fibre sources in diets for growing pigs on chemical composition of faeces and slurry and ammonia emission from slurry. Animal Feed Science and Technology, 134, 326-336.
- Huynh Thi Thanh Thuy, Aarnink, A.J.A. Verstegen, M.W.A.; Gerrits, W.J.J.; Heetkamp, M.J.W.; Kemp, B.; Canh, T.T. (2005) Effects of increasing temperatures on physiological changes in pigs at different relative humidities. Journal of Animal Science 83 (6). - p. 1385 - 1396.
- Jeppsson, K-H. 2000. Carbon dioxide emission and water evaporation from deep-litter systems. J. Agric. Engng Res. 77(4): 429-440
- Jeppsson,K-H. 2002. Daily variation in ammonia, carbon dioxide and water vapour emission from an uninsulated, deep litter building for growing/finishing pigs. *Biosystems Engineering* 81(2): 213-223
- Jørgensen, H., Bach Knudsen, K.E., Theil, P.K., 2001. Effect of dietary fibre on energy metabolism of growing pigs and pregnant sows. In: Chwalibog, A., Jakobsen, K. (Eds.), Energy metabolim in animals, Wageningen Pers, Wageningen, pp. 105-108
- Jørgensen, H., Jensen, S.K., Eggum, B.O., 1996a. The influence of rapeseed oil on digestibility, energy metabolism and tissue fatty acid composition in pigs. Acta Agriculturae Scandinavica Section A Animal Science 46, 65-75.
- Jørgensen, H., Larsen, T., Zhao, X.Q., Eggum, B.O., 1997. The energy value of shortchain fatty acids infused into the caecum of pigs. British Journal of Nutrition 77, 745-756.

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

- Jørgensen, H., 1998. Energy utilization of diets with different sources of dietary fibre in growing pigs. In: McCracken, K.J., Unsworth, E.F., Wylie, A.R.G. (Eds.), Energy Metabolism of Farm Animals, CAB International, University Press, Cambridge, pp. 367-370.
- Jørgensen, H., Serena, A., Hedemann, M.S., Bach Knudsen, K.E., 2007. The fermentative capacity of growing pigs and adult sows fed diets with contrasting type and level of dietary fibre. Livestock Science 109, 111-114.
- Jørgensen, H., Sørensen, P., Eggum, B.O., 1990. Protein and energy metabolism in broiler chickens selected for either body weight gain or feed efficiency. British Poultry Science 31, 517-524.
- Jørgensen, H., Zhao, X.Q., Bach Knudsen, K.E., Eggum, B.O., 1996b. The influence of dietary fibre and level on the development of the gastrointestinal tract, digestibility and energy metabolism in broiler chickens. British Journal of Nutrition75, 379-395.
- Jørgensen, H., Zhao, X.Q., Eggum, B.O., 1996c. The influence of dietary fibre and environmental temperature on the development of the gastrointestinal tract, digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs. British Journal of Nutrition 75, 365-378.
- Kiani, A., Chwalibog, A., Tauson, A-H., Nielsen, M., 2007. Partitioning of late gestation energy expenditure in ewe using indirect calorimetry and a linear regression approach. Archives of Animal Nutrition, 61(3), 168-178.
- Knegsel, A.T.M. van; Brand, H. van den; Dijkstra, J.; Straalen, W.M. van; Heetkamp, M.J.W.; Tamminga, S.; Kemp, B. (2007) Dietary Energy Source in Dairy Cows in Early Lactation: Energy Partitioning and Milk Composition. Journal of Dairy Science 90 (3). - p. 1467 - 1476.
- Li H; Xin H; Liang Y; Gates R S; Wheeler E F; Heber A J (2005). Comparison of direct and indirect ventilation rate determinations in layer barns using manure belts. Transactions of the ASAE, 48(1), 367-372
- Mashaly-MM; Heetkamp-MJW; Parmentier-HK; Schrama-JW. 2000. Influence of genetic selection for antibody production against sheep blood cells on energy metabolism in laying hens. Poultry-Science 79:519-524.
- Müller, H.-J., Rom, H.B and Pedersen, S., 2006. Comparison of Methods of Determination of Ventilation Flow in Animal Houses with Different Kinds of Animals. Proceedings of World Congress: Agricultural Engineering for a Better World, p 485
- Ni J Q; Hendriks J; Coenegrachts J; Vinckier C (1999a). Production of carbon dioxide in a fattening pig house under field conditions. I. Exhalation by pigs. Atmospheric Environment, 33, 3691–3696
- Ni J Q; Vinckier C; Hendriks J; Coenegrachts J (1999b). Production of carbon dioxide in a fattening pig house under field conditions. II. Release from the manure. Atmospheric Environment, 33, 3697–3703
- Nicks B., Laitat M., Vandenheede M., Désiron A., Verhaeghe C., Canart B., 2003. Emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapor in

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

the raising of weaned pigs on straw-based and sawdust-based deep litters. Animal Research, 52, 299-308.

- Nicks B., Laitat M., Farnir F., Vandenheede M., Verhaeghe C., Canart B., 2004a. Gaseous emissions in the raising of weaned pigs on fully slatted floor or on strawbased deep litter. In: Madec F., Clement G. (Ed.), Proceedings of the in-between congress of the ISAH. Animal production in Europe: The way forward in a changing world. Saint-Malo, France, 11-13 October 2004, 69-70.
- Nicks B., Laitat M., Farnir F., Vandenheede M., Verhaeghe C., Canart B., 2005. Gaseous emissions in the raising of weaned pigs on fully slatted floor or on sawdust-based deep litter. In: INRA (Ed.), Proceedings of the International workshop on green pork production. Paris, France, 24-27 May 2005, 123-124.
- Nicks B., Laitat M., Farnir F., Vandenheede M., Désiron A., Verhaeghe C., Canart B., 2004b. Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs. Animal Science, 78, 99-107.
- Noblet J., Karege C., Dubois S., Van Milgen J. (1999). Metabolic utilization of energy and maintenance requirements in growing pigs: effects of sex and genotype. J Anim Sci 77: 1208-1216.
- Olesen, C.S., Jørgensen, H., Danielsen, V., 2001. Effect of dietary fibre on digestibility and energy metabolism of pregnant sows. Acta Agriculturae Scandinavica Section A - Animal Science 51, 200-207.
- Olesen, C.S., Jørgensen, H., Danielsen, V., 2001. Effect of dietary fibre on digestibility and energy metabolism of pregnant sows. Acta Agriculturae Scandinavica Section A - Animal Science 51, 200-207.
- Parmentier, H.K.; Bronkhorst, S.; Nieuwland, M.G.B.; Vries Reilingh, G. de; Linden, J.M. van der; Heetkamp, M.J.W.; Kemp, B.; Schrama, J.W.; Verstegen, M.W.A.; Brand, H. van den (2002). Increased fat deposition after repeated immunisation in growing chickens. Poultry Science 81 (2002) 9. ISSN 0032-5791 p. 1308 1316.
- Pedersen, S. and Pedersen, C.B. 1995. Animal Activity Measured by Infrared detectors. Journal of Agricultural Engineering Research 61, 239-246
- Pedersen, S., H. Takai, J.O. Johnsen, J.H.M. Metz, P.W.G. Groot Koerkamp, G.H. Uenk, V.R. Phillips, M.R. Holden, R.W. Sneath, J.L. Short, R.P. White, J. Hartung, J. Seedorf, M. Schroeder, K.H. Linkert and C.M. Wathes. 1998. A Comparison of Three Balance Methods for Calculating Ventilation Flow Rates in Livestock Buildings. Journal of Agricultural Engineering Research. Volume 70, Number 1, Special Issues, pp 25-37
- Pedersen, S. and Thomsen, M.G., 2000. Heat and Moisture Production for Broilers on Straw Bedding. Journal of Agricultural Engineering Research, 75, 177-187.
- Philippe F.-X., Laitat M., Canart B., Farnir F., Massart L., Vandenheede M., Nicks B., 2006. Effects of a reduced diet crude protein content on gaseous emissions from deep-litter pens for fattening pigs. Animal Research, 55, 397-407.
- Philippe F.-X., Laitat M., Canart B., Vandenheede M., Nicks B., 2007. Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

fully slatted floor or on deep litter. Livestock Science, in press (available on: http://www.sciencedirect.com/science/journal/18711413)

- Rijnen-MMJA; Verstegen-MWA; Heetkamp-MJW; Haaksma-J; Schrama-JW. 2001. Effects of dietary fermentable carbohydrates on energy metabolism in group-housed sows. JOURNAL-OF-ANIMAL-SCIENCE 79:148-154.
- Sousa, P. and Pedersen, S. 2003. Ammonia emission from fattening pigs in relation to animal activity and carbon dioxide production. Proceedings of CIGR international Symposium on Gaseous and odour emissions from animal production facilities, Horsens, Denmark, page 114-121.
- Sousa, P. and Pedersen, S., 2004. Ammonia Emission from Fattening Pig Houses in Relation to Animal Activity and Carbon Dioxide Production. Agricultural Engineering International: the CIGR Journal of Scientific Research and Development. Vol. IV. December 2004
- Straalen, W.M. van; Laar, H. van; Brand, H. van den (2007). Methane production by lactating dairy cows on fat or corn silage rich diets compared to Intergovernmental penal on climate change (IPCC) estimates. In: Energy and protein metabolism and nutrition Eaap 124, Vichy, France, 9-13 September, 2007. Wageningen : Wageningen Academic Publishers, p. 613 614. Energy and protein metabolism and nutrition, 2007-09-09/ 2007-09-13.
- Theil, P.K., Kristensen, N.B., Jørgensen, H., Labouriau, R., Jakobsen, K., 2007. Milk intake and carbon dioxide production of piglets determined with the doubly labelled water technique. Animal 1, 881-888.
- Theil, P.K., Jorgensen, H., Jakobsen, K., 2002. Energy and protein metabolism in pregnant sows fed two levels of dietary protein. J. Anim. Physiol. a. Anim. Nutr. 86, 399-413.
- Theil, P.K., Jørgensen, H., Jakobsen, K., 2004. Energy and protein metabolism in lactating sows fed two levels of dietary fat. Livestock Production Science 89, 265-276.
- Thorbek, G., Chwalibog, A. and Henckel, S. (1984) Kvælstof- og energiomsætning hos svin af Dansk Landrace fra 20 til 120 kg legemsvægt. Normer for protein- og energi behov til vedligehold og vækst. Beretning fra Statens Husdyrbrugsforsøg 563,114pp
- Zhao, X.Q., Jørgensen, H., Jakobsen, K., 2001. Retention and oxidation of nutritions in broiler chickens fed different levels of rapeseed oil during the growth period. In: Chwalibog, A., Jakobsen, K. (Eds.), Energy Metabolism in Animals, Wageningen Pers, Wageningen, pp. 265-268.
- Zheng, C.-T., Jørgensen, H., Høy, C.-E., Jakobsen, K., 2006. Effects of increasing dietary concentrations of specific structured triacylglycerides on performance and nitrogen and energy metabolism in broiler chickens. Br. Poult. Sci. 47, 180-189.
- Van, Ouwerkerk E.N.J. and S. Pedersen. (1994). Application of the carbon dioxide mass balance method to evaluate ventilation rates in livestock buildings. XII World Congress on Agricultural Engineering: Volume 1. Proceedings of a conference held in Milan, Italy, August 29 - September 1, 1994, pp 516-529.

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.

- Wachenfelt, E.V., Pedersen, S. & Gustafsson, G. 2001. Release of heat, moisture and carbon dioxide in an aviary system for laying hens. British Poultry Science (2001) 42: 171-179
- Wang, J.F., Zhu, Y.H., Li, D.F., Jørgensen, H., Jensen, B.B., 2004. The influence of different fibre and starch types on nutrient balance and energy metabolism in growing pigs. Asian-Australian Journal of Animal Science 17, 263-270.
- Zhao, X.Q., Jørgensen, H., Jakobsen, K., 2001. Retention and oxidation of nutritions in broiler chickens fed different levels of rapeseed oil during the growth period. In: Chwalibog, A., Jakobsen, K. (Eds.), Energy Metabolism in Animals, Wageningen Pers, Wageningen, pp. 265-268.
- Zheng, C.-T., Jørgensen, H., Høy, C.-E., Jakobsen, K., 2006. Effects of increasing dietary concentrations of specific structured triacylglycerides on performance and nitrogen and energy metabolism in broiler chickens. Br. Poult. Sci. 47, 180-189.

S. Pedersen, V. Blanes-Vidal, H. Joergensen, A. Chwalibog, A. Haeussermann, M.J.W. Heetkamp and A.J.A. Aarnink. "Carbon Dioxide Production in Animal Houses: A literature Review". Agricultural Engineering International: CIGR Ejournal. Manuscript BC 08 008, Vol. X. December, 2008.