80 research outputs found

    EFFECT OF THE CASIMIR ENERGY ON THE BAG MODEL PHENOMENOLOGY OF LIGHT HADRONS

    Get PDF
    The dependence of light hadron masses and baryon magnetic moments on the magnitude of the Casimir energy is examined in the bag model with centre-of-mass corrections. There are seven free parameters in the model. Six of them are determined from the fit to the masses of certain hadrons, and the last one (Casimir energy parameter) from the best fit to the magnetic moments of light baryons. The predicted magnetic moments are compared with the results obtained in various other models and with experiment data

    Heavy hadron spectroscopy and the bag model

    Full text link
    Some time ago a slightly improved variant of bag model (the modified bag model) suitable for the unified description of light and heavy hadrons was developed. The main goal of the present work was to calculate the masses of the ground state baryons containing bottom quarks in the framework of this model. For completeness the predictions for other heavy hadrons are also given. The reasonable agreement of our results with other theoretical calculations and available experimental data suggests that our predictions could serve as a useful complementary tool for the interpretation of heavy hadron spectra.Comment: 18 pages, 9 tables, references to experiments updated, rms deviations given in some table

    Spin-other-orbit operator in the tensorial form of second quantization

    Full text link
    The tensorial form of the spin-other-orbit interaction operator in the formalism of second quantization is presented. Such an expression is needed to calculate both diagonal and off-diagonal matrix elements according to an approach, based on a combination of second quantization in the coupled tensorial form, angular momentum theory in three spaces (orbital, spin and quasispin), and a generalized graphical technique. One of the basic features of this approach is the use of tables of standard quantities, without which the process of obtaining matrix elements of spin-other-orbit interaction operator between any electron configurations is much more complicated. Some special cases are shown for which the tensorial structure of the spin-other-orbit interaction operator reduces to an unusually simple form

    Isoscalar Hamiltonians for light atomic nuclei

    Get PDF
    The charge-dependent realistic nuclear Hamiltonian for a nucleus, composed of neutrons and protons, can be successfully approximated by a charge-independent one. The parameters of such a Hamiltonian, i.e., the nucleon mass and the NN potential, depend upon the mass number A, charge Z and isospin quantum number T of state of the studied nucleus.Comment: REVTeX, 22 pages, 3 eps figures, to appear in PR

    Towards the unified description of light and heavy hadrons in the bag model approach

    Full text link
    Mass spectra of ground state hadrons containing u-, d-, s-, c-quarks as well as some lightest hadrons containing b-quarks are calculated on the basis of a slightly modified bag model. The center-of-mass motion corrections are incorporated using a wavepacket projection with Gaussian parametrization of the distribution amplitude. We use running coupling constant and also allow the effective quark mass to be scale-dependent. The impact of these modifications on the hadron mass spectrum is investigated. A comparison of the predicted mass values with the experimental data demonstrates that the modified bag model is sufficiently flexible to provide a satisfactory description of light and heavy hadrons (mesons and baryons) in a single consistent framework.Comment: 27 pages, 11 table

    Charmed baryons circa 2015

    Full text link

    A Sturm-Liouville problem for realistic internucleon potentials

    No full text
    ISSN 0024-2969 - neteisingas; nuo 2003 m. - ISSN 1648-8504Fizikos instituta
    corecore