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The dependence of light hadron masses and baryon magnetic moments on the magnitude of the Casimir energy is examined
in the bag model with centre-of-mass corrections. There are seven free parameters in the model. Six of them are determined
from the fit to the masses of certain hadrons, and the last one (Casimir energy parameter) from the best fit to the magnetic
moments of light baryons. The predicted magnetic moments are compared with the results obtained in various other models
and with experiment data.
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1. Introduction

Magnetic moments, beside the masses, are funda-
mental parameters of hadrons and carry significant in-
formation about their internal structure. Therefore,
they have been of theoretical interest for a long time up
to now. Various approaches and models can be used to
calculate these quantities. However, as noted in [1], the
mass spectrum and magnetic moments probe largely
orthogonal physical effects. For example, if we have a
model adjusted to provide a sufficiently good descrip-
tion of hadron masses, it is not certain that the descrip-
tion of magnetic moments will be of the same quality.
In QCD we expect that a more accurate solution gives
a better description of masses and magnetic moments
simultaneously. However, the phenomenological mod-
els used in practice to calculate hadron properties (var-
ious potential, chiral, bag models, etc) are not QCD. A
typical example is the MIT bag model. Magnetic mo-
ments predicted in Ref. [2] are about 30% too small,
in a serious conflict with the experiment. Neverthe-
less, if one takes the ratios of all the other moments
to that of a proton, the bag model predictions are sim-
ilar to the usual quark model predictions. Thus, the
lower absolute value of magnetic moments in the bag
model seems to be the overall scale problem. Magnetic
moments of individual quarks in the bag are associated
with overlaps of the small and large components of the

Dirac wave functions. This overlap is proportional to
the bag radius R. Can we find a way to enlarge the
bag radius and not to spoil a relatively good descrip-
tion of the mass spectra? In this case one is naturally
tempted to add an extra phenomenological term which
may help to ensure larger bag radii and consequently
better values of magnetic moments. For example, the
alternative confinement scheme based on a surface ten-
sion rather than a volume pressure was proposed [3].
Can one produce proper values of the magnetic mo-
ments by adding the surface energy term 4πTR2 to the
volume energy 4π

3 BR
3 and refitting the model param-

eters? Unfortunately, no. The model with the surface
tension was examined in detail in Ref. [4]. It appears
that the model in which the volume energy term is re-
placed by the surface tension energy provides results
very similar to the former one. Thus, if one adds the
two terms together, one can arbitrarily choose one of
the free parameters (B or T ), and the results obtained
are almost insensitive to this choice. One possible so-
lution to the problem was proposed in [5]. The point is
to add a term that differs between mesons and baryons.
The simplest such term is C |Nq −Nq|, where Nq and
Nq are the numbers of quarks and antiquarks, and C
is a new free parameter which could be adjusted so as
to produce the needed large bag radius and ensure the
correct value of the magnetic moment of (say) the pro-
ton. This procedure improves the overall description
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of baryon magnetic moments; however, another attrac-
tive feature of the bag model – the unified treatment
of mesons and baryons using the same expression for
the particle mass – is being lost. A different and more
elegant (in our opinion) way to deal with the problem
is associated with the so-called centre-of-mass motion
(c. m. m.) corrections. The bag model is usually con-
structed as an independent particle shell model. There-
fore, there is a sizeable spurious contribution to the en-
ergy from the motion of the centre of mass, which is
confined inside the bag. For the ground-state hadrons,
the c. m. m. energy is simply an inconvenience and re-
quires some correction to the energy. While there are
questions as to the best method for estimating these
corrections, they must be taken into account in some
fashion and, as noted in Ref. [6], may be applied to
restore the correct order of magnitude of the magnetic
moments. The idea really works. The corrected values
of the magnetic moments are much closer to the exper-
imental data [7–9]. Still, some discrepancy remains in-
dicating that the correction is somewhat too weak. Can
we proceed with the improvement of the magnetic mo-
ments? In the present paper we will show that such
improvement is possible via choosing a proper value of
the zero-point (Casimir) energy.

The concept of the Casimir energy appears in the
bag model phenomenology almost immediately after
the birth of the model [2] with the wrong sign of the
energy term at first. In the early versions of the model
the bag energy necessary to fit hadron masses had the
term Z0/R with negative Z0. This term was plausibly
erroneously interpreted as the Casimir energy. When
the c. m. m. corrections are taken into account, from
the phenomenological point of view there is no need
of such a term at all [10]. Moreover, a careful analy-
sis shows [11] that Casimir force for a spherical shell
with the bag model boundary conditions is repulsive,
and, consequently, the constant Z0 must be of positive
sign. Now it is almost clear how the Casimir energy
may improve the magnitude of magnetic moments. The
strength of the c. m. m. correction is usually derived
from the fit of certain hadron masses to the experimen-
tal data [8, 9]. So, if we add some positive term to the
uncorrected energy, the correction would be stronger,
enlarging the magnitude of the corrected magnetic mo-
ments in turn.

The paper is organised as follows: in Sec. 2 we
describe briefly the model we are dealing with and
present explicit expressions for magnetic moments of
the baryon octet and decuplet. In Sec. 3 we examine
the dependence of the light hadron masses and mag-

netic moments on the magnitude of the Casimir energy
parameter Z0. The “best” fit to the magnetic moments
is found. The new model parameters are used to re-
calculate the ground-state hadron masses and magnetic
moments of the light baryon octet and decuplet. The re-
sults obtained are compared with other theoretical pre-
dictions and experimental data. Discussion and con-
cluding remarks are given in Sec. 4.

2. MIT bag model in the static spherical cavity
approximation

The MIT bag model was at first formulated as a
Lorentz-invariant field theory [12]. However, for the
investigation of hadron properties the static spherical
cavity approximation of the model was widely used and
even became the synonym of the MIT bag model. The
hadron bag energy in this approximation is given by

E = EV + Eq + ∆E + E0 . (1)

The four terms on the right-hand side are:

• bag volume energy,

EV =
4π

3
BR3 , (2)

where B is the so-called bag constant, and R is the
radius of the confinement region (bag radius);
• the sum of single-particle quark energies

Eq =
∑
i

εi , (3)

where the energies of individual quarks obey the
eigenvalue equation

tan
(
R
√
ε2 −m2

)
=

R
√
ε2 −m2

1−mR− εR
; (4)

• quark–quark interaction energy due to one-gluon
exchange

∆E = Em + Ee , (5)

where Em and Ee are the colour-magnetostatic and
colour-electrostatic (Coulomb) pieces of the inter-
action energy (for more details see [9]);
• Casimir energy term

E0 =
Z0

R
. (6)

The parameter Z0 is thought to be calculable in
QCD, and to some extent it is.
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The interaction energy in Eq. (5) is computed to the
first order in the scale-dependent effective strong cou-
pling constant

αc(R) =
2π

9 ln(A+R0/R)
, (7)

where R0 is the scale parameter which plays the role
similar to QCD constant (R0 ∼ 1/Λ), and parameter
A serves to avoid divergences in the case R → R0.
Up and down quarks are assumed to be massless, and
the (scale-dependent) mass of the strange quark is to be
obtained from the mass function

ms(R) = m̃s + αc(R) · δs , (8)

where m̃s and δs are two free model parameters.
The calculation of the hadron mass spectrum is per-

formed in two steps. First, for each hadron the energy
(1) is to be minimised with respect to the bag radius
R. In this way the bag radii Ri of individual hadrons
are obtained. Then one can use Eq. (1) to calculate
the hadron bag energy Ei. However, this is not the
whole story. The bag energy still contains the spurious
c. m. m. energy. A prescription must be given to relate
the eigenvalues of the static bag model Hamiltonian to
the masses of hadrons. To this end we adopt the pro-
cedure proposed in Ref. [13] and applied in [14–16].
In this approach the bag state is expressed as a wave
packet of the physical states |H,k〉 with various total
momenta:

|B〉 =

∫
d3kΦP (|k|) |H,k〉 , (9)

with the Gaussian parametrization of the profile func-
tion [9, 16]

ΦP (s) =

(
3

2πP 2

)3/4

exp

(
− 3s2

4P 2

)
. (10)

The effective momentum square P 2 is defined as

P 2 = γ
∑
i

p2
i , (11)

where pi =
(
ε2
i −m2

i

)1/2 are the momenta of the in-
dividual quarks, and γ is an adjustable parameter gov-
erning the c. m. m. correction.

The relation between the bag model energy E and
the mass M of a particular hadron is given by

E =

∫
d3sΦ2

P (s)
√
M2 + s2 . (12)

In order to obtain the mass of the particle, Eq. (12) is
to be solved numerically. We also must decide how to

Table 1. Composition of baryon octet magnetic
moments in terms of magnetic moments of indi-
vidual quarks (column 2) and in terms of corre-

sponding reduced quantities (column 3).

Particles µ0
H µ0

H

P 1
3
(4u− d) ū

N 1
3
(4d− u) − 2

3
ū

Λ s − 1
3
s̄

Σ0 1
3
(2u+ 2d− s) 1

9
(2ū+ s̄)

Σ− 1
3
(4d− s) 1

9
(s̄− 4ū)

Σ+ 1
3
(4u− s) 1

9
(8ū+ s̄)

Ξ− 1
3
(4s− d) 1

9
(ū− 4s̄)

Ξ0 1
3
(4s− u) − 2

9
(ū+ 2s̄)

Σ→ Λ 1√
3
(d− u) − 1√

3
ū

deal with the zoo of free parameters. Altogether, there
are seven parameters –B, γ,A,R0, m̃s, δs, andZ0. We
will use the same prescription as in [9] for the first six
of them: B, γ, A, and R0 will be determined by fitting
calculated masses of light hadrons (N , ∆, π, and the
average mass of the ω–ρ system) to experimental data,
m̃s and δs from the fit to the masses of φ and Λ. There
remains one more parameter Z0, which scales the mag-
nitude of the Casimir energy. All questions associated
with this term we postpone for the next section.

The last ingredient we need for our investigation is
the expressions for the baryon magnetic moments. In
the bag model, just as in the simple quark model, mag-
netic moments of baryons can be represented as

µ0
H =

∑
i

µi 〈H ↑|σiz |H ↑〉 . (13)

The magnetic moments of quarks confined in the bag
have the form

µi = qi µ̄i , (14)

where qi is the quark electric charge, and reduced
(charge independent) quark magnetic moments µ̄i are
given by [2]

µ̄i =
4εiRH + 2miRH − 3

2(εiRH − 1)εiRH +miRH

RH

6
. (15)

Magnetic transition moments are defined by

µ0
H→H′ =

∑
i

µi
〈
H′↑
∣∣σiz ∣∣H ↑〉 , (16)

where for simplicity RH = RH′ is assumed.
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Table 2. Composition of baryon decuplet mag-
netic moments in terms of magnetic moments
of individual quarks (column 2) and in terms of
corresponding reduced quantities (column 3).

Particles µ0
H µ0

H

∆− 3d −ū

∆0 2d+ u 0

∆+ 2u+ d ū

∆++ 3u 2ū

Σ∗ − 2d+ s − 1
3
(2ū+ s̄)

Σ∗ 0 u+ d+ s 1
3
(ū− s̄)

Σ∗ + 2u+ s 1
3
(4ū− s̄)

Ξ∗ − 2s+ d − 1
3
(ū+ 2s̄)

Ξ∗ 0 2s+ u 2
3
(ū− s̄)

Ω− 3s −s̄

The origin of magnetic moments in the bag model
is a rather interesting phenomenon by itself. Massless
structureless Dirac particles (u- and d-quarks) have no
intrinsic magnetic moments at all. Therefore, the mag-
netic moments of light baryons (proton, neutron, etc)
are as they are only because of the confinement. But
should we wonder? The proton consisting of massless
quarks has a nonzero mass only because of the confine-
ment as well.

Matrix elements 〈H′↑|σiz |H ↑〉 can be readily cal-
culated with SU(6) wave functions providing the usual
quark model expressions for the baryon magnetic mo-
ments. The results are presented in Tables 1 and 2 for
the baryon octet (J = 1/2) and decuplet (J = 3/2),
respectively. For simplicity, in cases with no ambiguity
the shorthand notations (µP → P , µ̄s → s̄, etc) are
used. The entries in columns 3 were obtained assum-
ing isospin symmetry, i. e. µ̄u = µ̄d (or ū = d̄ in the
shorthand notations).

From Tables 1 and 2 several quark model relations
can be deduced immediately:

N =−2

3
P , (17)

Σ0 =
1

2
(Σ+ + Σ−) , (18)

∆−=−∆+ , (19)

∆++ = 2∆+ ; (20)

Ω−' 3Λ , (21)

Ξ∗ 0' 2Σ∗ 0 , (22)

Σ∗ −'−3Σ0 . (23)

In the bag model (without corrections) the relations
(17)–(20) hold exactly, while (21)–(23) are only ap-
proximate because the magnetic moments of quarks
depend on the bag radius which for particles entering
Eqs. (21)–(23) differ (RΩ− 6= RΛ, etc). The famous
quark model relation µN/µP = −2/3 (Eq. (17)) dif-
fers from the experimental value −0.68 by about 3%, a
typical discrepancy that could be caused by the isospin
symmetry breaking.

Before comparing the quantities computed in the
static spherical cavity approximation with experimen-
tal data, they must be corrected for the center-of-mass
motion. Maybe the simplest (though, plausibly not
very accurate) way to do this is to adopt the prescrip-
tion proposed by Halprin and Kerman [6]. To make
things as clear as possible we repeat their derivation
below. Let us assume that the c. m. m. corrected bag
energy Ecor (to be identified with the mass of the parti-
cle Ecor →M ) is given by the relation

E2
cor = E2

bag − P 2 , (24)

where Ebag = E is the static cavity bag energy, and
P 2 =

〈
P 2
〉

is the expectation of the mean-squared to-
tal momentum of the system given by Eq. (11). In the
presence of the magnetic field, if

〈
P 2
〉
, at least to the

first order, is unaffected, we have

E2
cor(H) = E2

bag(H)− P 2 . (25)

Differentiation of both sides of the last equation with
respect to H and evaluation in the weak-field limit
yields

2Ecor
∂Ecor(H)

∂H
≈ 2Ebag

∂Ebag(H)

∂H
. (26)

Now, because ∂Ecor(H)
∂H and ∂Ebag(H)

∂H in the limit
H → 0 are, respectively, corrected (µ) and uncorrected
(µ0) magnetic moments, we arrive at the expression

µ =
E

M
µ0 , (27)

where we have returned to our previous notations
Ecor → M , Ebag = E. It is plausible that by ap-
plying Eq. (27) the c. m. m. corrections could be to
some extent overestimated. On the other hand, this re-
lation is very attractive because of its simplicity and
universality. Note, however, that Eq. (24) used in the
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derivation of the relation (27) differs from our previous
choice (Eq. (12)). For further applications we need to
know to what extent Eq. (27) is compatible with the
c. m. m. corrections defined via Eq. (12). As noted
in [16], Eq. (12) may be rewritten in the form

M2 = E2 − β
(
M2

P 2

)
P 2 , (28)

where

β(x) =
54

π

[ ∞∫
0

t2dt
√
t2 + x exp

(
− 3

2
t2
)]2

− x .

(29)
In the nonrelativistic case the function β(x) ap-

proaches 1, and Eq. (12) (or Eq. (28)) is equivalent to
the relation

M2 = E2 − P 2 , (30)

which is nothing else than Eq. (24). In the case of light
hadrons we are dealing with values of β(x) lying in
the range 0.925–0.945 (see Ref. [9]), though the use
of Eq. (30) instead of Eq. (12) may introduce an error
of about 10%. So, strictly speaking, if one is going
to calculate c. m. m. corrected magnetic moments via
Eq. (27), the better prescription for the hadron mass
should be Eq. (30). On the other hand, Eq. (12) seems
to be preferable from the theoretical point of view. In
the end, both of them are just prescriptions and after
refitting the model parameters could give to some ex-
tent similar results. Nevertheless, the approach based
on Eqs. (9) and (12) has one additional advantage be-
cause in this case for spin-1/2 baryons one has more
refined formula for the c. m. m. corrected magnetic mo-
ments [14]

µcor =
3

1 + 〈M/E〉+ 〈M2/E2〉

×
(
µ0 +

1− 〈M/E〉
3

MP

M
Q

)
, (31)

where µ0 is uncorrected magnetic moment,MP is mass
of the proton, M and Q is mass and charge of the
baryon under consideration. The averages 〈M/E〉 and〈
M2/E2

〉
have to be calculated with the profile ΦP (s)

given by Eq. (10). Since the relation (31) was derived
for the specific case of S = 1/2 baryons, it cannot be
used directly in the case of S = 3/2. The analysis of
the spin-3/2 fermions implies the use of the Rarita–
Schwinger spinors, which causes additional complica-
tions. However, we still have a more universal relation
(27) at our disposal.

3. Reintroducing Casimir energy

It is almost a common agreement that the bag model,
if taken seriously, must contain a Casimir energy term.
If one naively tried to generalise the QED result, one
would readily obtain Z0 ≈ 0.37 (see Ref. [17] for
discussion). However, such calculation includes con-
tributions from both exterior and interior gluon field
modes, but only the latter – because of the confine-
ment – should be considered in the bag model. The
correct bag model result found by the Green function
method [11] has logarithmic divergence

E0 =
8

R

[
0.090 + 0.0081 ln

θ

8

]
, (32)

where θ → 0 is a cutoff parameter which could be as-
sociated with the bag “skin depth” representing a real-
istic boundary, instead of a sharp mathematical one. As
suggested by Milton [11], Eq. (32) may be used in bag
model calculations with an effective θ � 1.

A very similar result was obtained in [18] using a
zeta function method for the regularised energy mode
summation,

E0 =
8

R
[0.084 + 0.0081 ln(ξR)] . (33)

This expression contains the energy scale parameter
ξ which in pure QCD should be associated with the
QCD constant Λ.

We see that in any case the Casimir energy term can
be expressed as Z0/R with the model dependent pa-
rameter Z0, the values of which vary in the interval
0 6 Z0 6 1. In previous bag model calculations [9]
we have ignored the Casimir energy contribution. One
reason for this was very simple – we wanted to reduce
the number of free model parameters. A careful reader
could find a more serious objection. For example, be-
cause the Casimir energy term in the bag model Hamil-
tonian acts as a certain stabilising factor, in the pres-
ence of the Casimir energy the empty bags (without
quarks and gluons) are allowed. Could one imagine
such lumps of energy travelling across the universe?
Our opinion is that this must not be a very severe prob-
lem. We already know that the bag model can contain
spurious states (e. g., orbital excitations of the center-
of-mass). The origin of the empty bag state seems to
be the same as the origin of the Casimir energy – vac-
uum fluctuations. Evidently, it is in the spirit of the bag
model philosophy that even the vacuum fluctuations of
the gluon field are confined in the bag and therefore
such solutions are almost unavoidable. The vacuum
fluctuations are not real physical states, so we think that
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an empty bag state can be interpreted as spurious and
safely ignored. In a sense it is the manifestation of the
nontrivial structure of QCD vacuum, pointing out ex-
plicitly that the perturbative vacuum of the bag model
is not the ground state of the true physical vacuum.

Since the presence of the Casimir energy in the bag
model seems to have a rather firm theoretical ground,
let us see if the reintroduction of this term can improve
the model predictions. For a series of values of the
Casimir energy parameter Z0 in the range 0–1 we cal-
culated the spectrum of light hadrons and baryon mag-
netic moments. For every value ofZ0 the model param-
eters were refitted along the procedure discussed in the
previous section and completely analogous to the one
applied in [9]. In order to get some feeling to what ex-
tent the results are model dependent, we performed our
analysis in two slightly different variants of the model:
one (Var1) in which the hadron mass was related to the
bag energy via Eq. (30), and other (Var2) in which such
relation had the form given by Eq. (12). In each case we
tried to find the “best” value of Z0. In order to compare
different fits, we used the root mean square deviations
between predicted and experimental values of physical
quantities:

χ(E) =

[
1

14

14∑
i=1

(
Mi −M ex

i

)2]1/2

(34)

for hadron masses and

χ(µ) =

[
1

9

9∑
i=1

(
µi − µex

i

)2]1/2

(35)

for magnetic moments. In Eq. (34) the mass values
of 14 hadrons (all light ground state hadrons except η
and η′ mesons, masses of which cannot be predicted
in the lowest order approximation) were used. The
summation in Eq. (35) includes magnetic moments of
seven spin-1/2 baryons (namely, P , N , Λ, Σ+, Σ−,
Ξ0, and Ξ−), the Σ0 → Λ transition moment, and the
magnetic moment of Ω− – the only spin-3/2 baryon,
the magnetic moment of which has been measured
with sufficient precision. In the case of Var1 we used
the Halprin–Kerman relation (Eq. (27)) to calculate
c. m. m. corrected values of magnetic moments. For
Var2 our choice is more complicated (and possibly not
so consistent). In this case for spin-1/2 baryons we can
use a plausibly more accurate expression (31), and we
do. For spin-3/2 baryons, in the absence of something
better, we make a step aside from the purity require-
ments and apply the same universal Halprin–Kerman
relation as used before.

Table 3. Model parameters in the two variants of the bag model
(Var1 and Var2) – with and without (Z0 = 0) the Casimir energy.

Mass parameters (m̃, δ) are in GeV, R0 in GeV−1, B in GeV4.

Parameter
Var1 Var2

Z0 = 0 Z0 = 0.22 Z0 = 0 Z0 = 0.64

B×104 7.301 7.468 7.597 8.594

γ 1.785 2.153 1.958 3.300

A 0.772 0.651 1.070 0.776

R0 3.876 4.528 2.543 4.210

m̃s 0.217 0.262 0.161 0.335

δs 0.109 0.083 0.156 0.046

Fig. 1. Dependence of χ(E) (in GeV) on Z0 for the two variants
of the model as described in the text. Dashed curve corresponds to

Var1 and solid one to Var2.

Our results for the masses and magnetic moments
are presented in Figs. 1–4 and Tables 3–5. All exper-
imental data are from Particle Data Tables [19]. From
Figs. 1–3 we can make an immediate conclusion that,
if one does not want to include Casimir energy in the
Hamiltonian of the bag model (i. e., Z0 = 0), it is
preferable to use the first variant of the model (Var1)
with the c. m. m. corrections given by the Eqs. (27) and
(30) because it gives better predictions for masses and
magnetic moments than the second variant (Var2 with
Z0 = 0).

Now let us “switch on” Casimir force and see what
is the effect of the Casimir energy on the masses of
hadrons.

When we pick the larger values of Z0, the gain in
the Casimir energy induces changes of bag parame-
ters through the fitting procedure. For example, when
the Casimir energy becomes larger, a smaller value
of strong coupling constant is necessary to obtain the
same masses of light hadrons chosen to fix the bag
model parameters. Therefore, we expect that with
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Table 4. Masses of light hadrons (in GeV) in the two variants of the bag
model (Var1 and Var2) – with and without (Z0 = 0) the Casimir energy.

Hadrons
Var1 Var2

EXP [19]
Z0 = 0 Z0 = 0.22 Z0 = 0 Z0 = 0.64

π 0.137 0.137 0.137 0.137 0.137

ρ 0.776 0.776 0.776 0.776 0.768

ω 0.776 0.776 0.776 0.776 0.783

N 0.939 0.939 0.939 0.939 0.939

∆ 1.232 1.232 1.232 1.232 1.232

K 0.453 0.458 0.437 0.460 0.496

K∗ 0.895 0.894 0.897 0.891 0.894

φ 1.019 1.019 1.019 1.019 1.019

Λ 1.116 1.116 1.116 1.116 1.116

Σ 1.158 1.159 1.159 1.159 1.193

Σ∗ 1.385 1.383 1.388 1.383 1.385

Ξ 1.310 1.313 1.310 1.317 1.318

Ξ∗ 1.537 1.536 1.543 1.539 1.533

Ω− 1.688 1.690 1.695 1.698 1.672

χ(E) 0.016 0.015 0.020 0.015 —

0.2 0.4 0.6 0.8
ZO

0.14

0.16

0.18

0.2

0.22

0.24

χHµL

Fig. 2. Dependence of χ(µ) (in nuclear magnetons) on Z0 for the
two variants of the model as described in the text. Dashed curve

corresponds to Var1 and solid one to Var2.

the increase of Z0 the mass difference between vec-
tor and scalar mesons as well as between spin-3/2 and
spin-1/2 baryons will become smaller. On the other
hand, for the fit of the φ meson mass a larger strange
quark mass will be necessary. Then the masses of
hadrons containing strange quarks will increase. For
some hadrons these two effects may partially compen-
sate each other. We can see precisely such behaviour of
hadron masses in Table 4: the masses of K, Ξ, and Ω−

Fig. 3. Dependence of c. m. m. corrected magnetic moment of the
proton (in nuclear magnetons) on Z0 for the two variants of the
model as described in the text. Dashed curve corresponds to Var1,
solid one to Var2, and dash-dotted line denotes the experimental

value 2.79.

increase, while the masses ofK∗, Σ∗, and Ξ∗ fall down.
An exception is the Σ hyperon, the mass of which is
strongly correlated with the mass of Λ and the latter is
nailed down because it (together with φ) is used to ob-
tain the model mass parameters. However, in the vari-
ant 1 of the model the changes of hadron masses are
extremely small, and the values of Z0 in a wide range
(0.1 6 Z0 6 0.6) could be treated as a good choice
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Table 5. Magnetic moments of light baryons (in nuclear magnetons) in the two variants
of the bag model (Var1 and Var2) – with and without (Z0 = 0) the Casimir energy.

Baryons
Var1 Var2

EXP [19]
Z0 = 0 Z0 = 0.22 Z0 = 0 Z0 = 0.64

P 2.732 2.885 2.608 2.915 2.793

N −1.821 −1.924 −1.658 −1.830 −1.913

Λ −0.598 −0.625 −0.555 −0.607 −0.613±0.004

Σ+ 2.436 2.570 2.342 2.628 2.458

Σ0 0.756 0.796 0.701 0.776 —

Σ− −0.924 −0.978 −0.941 −1.075 −1.160±0.025

Ξ0 −1.307 −1.371 −1.217 −1.346 −1.250±0.014

Ξ− −0.496 −0.513 −0.539 −0.601 −0.651±0.003∣∣Σ0 → Λ
∣∣ 1.465 1.547 1.444 1.521 1.61±0.08

Ω− −1.598 −1.657 −1.587 −1.772 −2.02±0.05

∆++ 4.846 5.040 4.829 5.389 3.7 — 7.5

∆+ 2.423 2.520 2.414 2.694 —

∆0 0 0 0 0 —

∆− −2.423 −2.520 −2.414 −2.694 —

Σ∗ + 2.602 2.721 2.589 2.927 —

Σ∗ 0 0.240 0.255 0.239 0.275 —

Σ∗ − −2.122 −2.211 −2.112 −2.377 —

Ξ∗ 0 0.454 0.488 0.450 0.536 —

Ξ∗ − −1.847 −1.923 −1.836 −2.067 —

χ(µ) 0.181 0.158 0.209 0.124 —

Fig. 4. Dependence of c. m. m. corrected magnetic moment of Ω−

(in nuclear magnetons) on Z0 for the two variants of the model as
described in the text. Dashed curve corresponds to Var1, solid one

to Var2.

(see Fig. 1). We can say that in this sense the variant 1

is relatively stable. In the variant 2 the situation differs.
An increase in Z0 improves the light hadron mass spec-
trum (see Fig. 1 again). In this case the large values of
Z0 (0.5 6 Z0 6 1) would be preferable. Though we
se that the reintroduction of the Casimir energy into the
bag model Hamiltonian with the value of Z0 ≈ 0.7 can
make the hadron mass predictions in the variant 2 of
the model to be of the similar quality as the predictions
of variant 1.

Now let us see what is the effect of the changes in Z0

on the calculated values of magnetic moments. From
Figs. 3, 4 we see that there exists almost linear depen-
dence of c. m. m. corrected magnetic moments on the
Casimir energy parameter Z0. For example, the choice
Z0 = 0.37 in variant 2 (see Fig. 3) would provide the
required value 2.79µN of the magnetic moment of a
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proton (µN stands for nuclear magneton, not to be con-
fused with the magnetic moment of a neutron). The
value 0.37 looks like a magic because it is exactly the
same value that was deduced from QED. No doubt, it
is a simple coincidence. Such things happen.

Our strategy is to find the optimal values of the
Casimir energy parameter from the minimisation of
χ(µ). The values obtained in this way are Z0(Var1) =
0.22 and Z0(Var2) = 0.64 for the variants 1 and 2, re-
spectively. Now comparing predictions for magnetic
moments in both variants of the model we see that, after
all, variant 2 gives prominently better results. Explicit
results for magnetic moments in both cases are listed
in Table 5. And finally, in Tables 6, 7 we compare
our predictions for magnetic moments with other cal-

culations performed using different approaches. These
are: the simple nonrelativistic result obtained using
values from the two-parameter fit (µd = −0.908µN ,
µs = −0.592µN , µu = −2µd) [20], the transla-
tionally invariant model with harmonic oscillator wave
functions [21, 22], the chiral constituent quark model
[23], the chiral perturbation theory [24, 25], the six-
parameter fit based on the chiral bag sum rules [26],
the eight-parameter fit based on the large-Nc chiral per-
turbation theory [27], the eight-parameter fit based on
1/Nc expansion [28], the QCD sum rules [29, 30], and
the lattice calculations [31, 32].

Table 6. Magnetic moments (in nuclear magnetons) obtained from the best fit in the bag model
(Bag) and in other approaches as described in the text. The quantities used as input data are

indicated by asterisk (*).

Particles EXP [19] Bag Nonrel [21, 22] [23] [24, 25] [26]

P 2.793 2.915 2.724 2.794 2.80 2.58 2.79*

N −1.913 −1.830 −1.816 −1.894 −2.11 −2.10 −1.91*

Λ −0.613±0.004 −0.607 −0.592 −0.612 −0.58 −0.66 −0.51

Σ+ 2.458 2.628 2.618 2.68 2.39 2.49 2.46*

Σ0 — 0.776 0.803 0.79 0.54 0.66 0.65

Σ− −1.160±0.025 −1.075 −1.013 −1.088 −1.32 −1.10 1.16*

Ξ0 −1.250±0.014 −1.346 −1.394 −1.45 −1.24 −1.27 1.25*

Ξ− −0.651±0.003 −0.601 −0.487 −0.487 −0.50 −0.95 −1.07∣∣Σ0 → Λ
∣∣ 1.61±0.08 1.521 1.570 1.6 1.60 1.58 —

Ω− −2.02±0.05 −1.772 −1.776 −1.80 −1.71 −2.02* −2.06

∆++ 3.7—7.5 5.389 5.448 5.23 4.51 6.04 4.52*

∆+ — 2.694 2.724 2.58 2.00 2.84 2.12

∆0 — 0 0 −0.078 −0.51 −0.36 −0.29

∆− — −2.694 −2.724 −2.68 −3.02 −3.56 −2.69

Σ∗ + — 2.927 3.040 3.05 2.69 3.07 2.63

Σ∗ 0 — 0.275 0.316 0.289 0.02 0 0.08

Σ∗ − — −2.377 −2.408 −2.43 −2.64 −3.07 −2.48

Ξ∗ 0 — 0.536 0.632 0.68 0.54 0.36 0.44

Ξ∗ − — −2.067 −2.092 −2.13 −1.87 −2.56 −2.27

χ(µ) — 0.124 0.138 0.138 0.14 0.15 0.14
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Table 7. Magnetic moments (in nuclear magnetons) obtained in other approaches as
described in the text – continuation of Table 6.

Particles EXP [19] [27] [28] [29, 30] [31, 32]

P 2.793 2.759 2.72 2.82±0.26 2.3±0.3

N −1.913 −1.975 −1.91 −1.97±0.15 −1.3±0.2

Λ −0.613±0.004 −0.559 −0.61 −0.56±0.15 −0.40±0.07

Σ+ 2.458 2.428 2.45 2.31±0.25 1.9±0.2

Σ0 — 0.625 0.64 0.69±0.07 0.54±0.09

Σ− −1.160±0.025 −1.179 −1.16 −1.16±0.10 −0.87±0.09

Ξ0 −1.250±0.014 −1.301 −1.26 −1.15±0.05 −0.95±0.08

Ξ− −0.651±0.003 −0.691 −0.64 −0.64±0.06 −0.41±0.06∣∣Σ0 → Λ
∣∣ 1.61±0.08 1.594 1.49 — −1.15±0.16

Ω− −2.02±0.05 −2.042 −2.03 −1.49±0.45 −1.40±0.10

∆++ 3.7—7.5 5.390 5.64 4.13±1.30 4.91±0.61

∆+ — 2.383 2.67 2.07±0.65 2.46±0.31

∆0 — −0.625 −0.30 0 0

∆− — −3.632 −3.28 −2.07±0.65 −2.46±0.31

Σ∗ + — 2.519 2.97 2.13±0.82 2.05±0.26

Σ∗ 0 — −0.303 0.05 −0.32±0.15 0.27±0.05

Σ∗ − — −3.126 −2.86 −1.66±0.73 −2.02±0.18

Ξ∗ 0 — 0.149 0.41 −0.69±0.29 0.46±0.07

Ξ∗ − — −2.596 −2.45 −1.51±0.52 −1.68±0.12

χ(µ) — 0.040 0.05 — —

4. Discussion and conclusions

In the end, let us see what we could expect and
what we got. The main field of interest of our present
work was the magnetic moments of the light baryons.
The calculations were based on the usual quark model
formula (Eq. (13)), which expresses the magnetic mo-
ments of baryons through the magnetic moments of in-
dividual quarks µi. In the old-fashioned nonrelativis-
tic approach µi usually appear as free parameters. If
the isospin symmetry is assumed (µ̄u = µ̄d), one has a
two-parameter fit. The typical deviation from the ex-
periment χ(µ) in such an approach [20, 21] is (0.13–
0.14)µN . In some models (for example, such as bag
model, relativistic potential model [33–36], or QCD
string approach [37]) magnetic moments of quarks µi
can be calculated directly without introduction of any
new parameters. The agreement with experiment data

in these cases is somewhat worse, with χ(µ) in the in-
terval (0.15–0.18)µN . It is rather hard to improve this
result. For example, in various chiral models [23, 24,
26] χ(µ) lies in the range (0.14–0.15)µN . Better fits
require more free parameters. Some authors [27, 28]
managed to reduce χ(µ) to (0.04–0.05)µN with eight-
parameter fits. It could be interesting to note that sim-
ilar accuracy (χ(µ) ≈ 0.05µN ) was achieved by Pon-
drom in [20] with only four free parameters in his hand-
made expressions for magnetic moments of u- and s-
quarks.

In our bag model calculations we have used only
one free parameter (Casimir energy parameter Z0) and
obtained a significant improvement, though not so im-
pressive as the 8-parameter fit. The discrepancy with
experimental data χ(µ) was reduced (in the variant 2 of
the model) from 0.21µN to 0.12µN . Simultaneously,
predictions for the light hadron mass spectrum were
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improved as well. Moreover, the value of the Casimir
energy parameter Z0 required for the “best” fit is close
to its theoretical prediction [11].

So, should we include the Casimir energy in the bag
model Hamiltonian or not? From a theoretical point
of view the answer seems to be “yes”. From a phe-
nomenological point of view the answer would be more
modest: “it depends”. If one is interested in the mass
spectrum only, one can use the simpler variant 1 of the
bag model and plausibly do not care about anything
else. However, if for some reason we have decided
to exploit the theoretically more consistent variant 2,
or we are interested in the calculation of magnetic mo-
ments, then incorporation of the Casimir energy in the
bag model Hamiltonian would be a reasonable choice.
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Santrauka
Į modifikuoto kvarkų maišų modelio hamiltonianą įtrauktas Ca-

simiro energiją atitinkantis narys ir ištirta lengvųjų hadronų, kurių
sudėtyje yra u, d bei s kvarkai, masių ir magnetinių momentų pri-
klausomybė nuo šios energijos dydžio. Nustatyta optimali Casi-

miro energijos parametro Z0 reikšmė, kada geriausiai su su eks-
perimentu sutampa suskaičiuoti magnetiniai momentai ir dalelių
masės. Rezultatai palyginti su kitų autorių įvertinimais (atliktais
naudojant įvairius metodus) bei su eksperimentiniais duomenimis.

http://dx.doi.org/10.1103/PhysRevLett.101.222002
http://dx.doi.org/10.1103/PhysRevD.80.034027
http://dx.doi.org/10.1103/PhysRevD.76.094029
http://dx.doi.org/10.1103/PhysRevD.80.094014
http://lanl.arxiv.org/abs/1111.2055v2
http://dx.doi.org/10.1103/PhysRevD.78.013003
http://dx.doi.org/10.1103/PhysRevD.57.1801
http://dx.doi.org/10.1103/PhysRevD.43.1659
http://dx.doi.org/10.1103/PhysRevD.46.3067
http://dx.doi.org/10.1103/PhysRevD.28.2823
http://dx.doi.org/10.1103/PhysRevD.31.1652
http://dx.doi.org/10.1103/PhysRevD.34.196
http://dx.doi.org/10.1103/PhysRevD.41.1568
http://dx.doi.org/10.1103/PhysRevD.62.093016

