15 research outputs found

    SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas

    Get PDF
    High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere, e.g., freshwater, pollutants. As numerical models continue to evolve toward finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed toward spaceborne implementation within Europe and beyond

    Two-way nested model of mesoscale circulation features in the Ligurian Sea

    No full text
    A coarse resolution primitive equation model of 1/4° resolution is implemented covering the whole Mediterranean Sea. Within this grid a 1/20° resolution model of the Liguro-Provençal basin and the northern part of the Tyrrhenian Sea is embedded. A third fine resolution model of 1/60° is nested in the latter one and simulates the dynamics of the Ligurian Sea. Comparisons between one-way and two-way nesting in simulating the Northern Current (NC) are made. The properties of the Eastern and Western Corsican Current and the Northern Current are investigated with this nesting system. Special attention is given to the variability of the NC. Meanders and interactions with Winter Intermediate Water lenses are shown. Topographic features also lead to a highly variable NC

    An Improved Methodology for Filling Missing Values in Spatiotemporal Climate Dataset: Application to Tanganyika Lake Dataset

    Full text link
    In this paper, an improved methodology for the determination of missing values in a spatio-temporal database is presented. This methodology performs denoising projection in order to accurately fill the missing values in the database. The improved methodology is called EOF Pruning and it is based on an original linear projection method called Empirical Orthogo- nal Functions (EOF). The experiments demonstrate the performance of the improved methodology and present a comparison with the original EOF and with a widely-used Optimal Interpolation method called Objective Analysis.CLIMFIS

    Assimilation of Sea Surface Temperature predicted by a satellite-based forecasting system in a doubly nested primitive equation model of the Ligurian Sea

    Full text link
    Data assimilation is traditionally used to combine model dynamics and observations in a statistical optimal way. Assimilation of observations improves therefore hindcasts and nowcasts of the ocean state than otherwise obtained by the model alone. The observational constraints are necessary to reduce uncertainties and imperfections of the ocean model. Due to the obvious lack of future observations, the model forecast cannot be controlled by observations and the predictive skill degrades as the forecast time lag increases. The error grow is not only caused by the chaotic nature of the system but also by the biases and drifts of the model. The later part can be reduced by considering different models with different imperfections. Data assimilation provides the statistical frame for merging the different model results. A primitive equation model of the Mediterranean Sea (1/4° resolution) has been implemented with two successive grid refinements of the Liguro-Provençal Basin (1/20°) and the Ligurian Sea (1/60°) respectively (Barth et al, 2003). The dependence of the ``parent'' model and the embedded ``child'' model is bi-directional; it involves the exchange of boundary conditions and feedback between the models. Alvarez el al. (2004) developed a statistical predictor for forecasting the SST of the Ligurian Sea with a time lag of 7 days based on the previous remote sensed SST. The degrees of freedom of the SST are reduced by an Empirical Orthogonal Function (EOF) analysis. A genetic algorithm trained by the historical SST evolution in the Ligurian Sea is used to predict the EOF amplitudes. Observed and forecasted SST are assimilated in the hydrodynamic model and the results of this two experiments are compared to the model run without assimilation. The assimilation of the forecasted SST reduces the error of the model by an amount comparable to the assimilation of real SST, showing the potential of skill improvement of combining statistical and hydrodynamic models

    SMOS satellite inference of alkalinity over Mediterranean basin

    Full text link
    peer reviewedNovel SMOS satellite estimates of Sea Surface salinity in the Mediterranean Sea will be used to infer the spatial and temporal distribution of Alkalinity in this basin, exploiting the direct relationship between salinity and alkalinity. A proper validation of the derived variable will be performed against in-situ data, climatologies and model outputs. The resulting estimates of alkalinity in the Mediterranean Sea will be linked to the overall carbonate system in the broader context of ocean acidification assessment. © 2018 IEEE

    Strong Long‐Lived Anticyclonic Mesoscale Eddies in the Balearic Sea: Formation, Intensification, and Thermal Impact

    Full text link
    Anticyclonic mesoscale eddies are often observed in the Balearic Sea (BS) toward the end of summer and autumn. In some years, these eddies become strong and persistent, modifying the local water mass properties. In this study, we analyze two of the most significant recent long-lived anticyclonic eddies, occurring in 2010 and 2017, using data from a high-resolution circulation model, altimetry and satellite-borne sea surface temperature observations. These eddies lasted around 2 and 4 months, respectively, with a radius varying between 40 and 75 km. The generation and intensification mechanisms of these long-lived anticyclonic eddies are studied by means of (a) energy conversion terms associated with eddy-mean flow interaction and (b) model sensitivity tests. Results show that these eddies were formed and intensified through mixed barotropic and baroclinic instabilities. The former are produced under the action of intense northwesterly (NW) winds. The latter are related to the existence of an intense summer thermal front between the BS and the Gulf of Lion, and to northward inflows of relatively lower salinity waters. Both the wind events and the presence of the thermal front are necessary for the formation of the eddies. The intensification process varied between both events. While in 2010 it was driven by significant salinity gradients produced by northwards inflows, in 2017 it was produced by additional intense NW winds. Both long-lived anticyclonic eddies created long-lasting surface temperature anomalies up to 2.5°C, which have characteristics of local marine heatwaves

    Application of a SEEK filter to a 1D biogeochemical model of the Ligurian Sea: Twin experiments and real data assimilation

    No full text
    The Singular Evolutive Extended Kalman (SEEK) filter has been implemented to assimilate in-situ data in a 1D coupled physical-ecosystem model of the Ligurian Sea. The biogeochemical model describes the partly decoupled nitrogen and carbon cycles of the pelagic food web. The GHER hydrodynamic model (1D version) is used to represent the physical forcings. The data assimilation scheme (SEEK filter) parameterizes the error statistics by means of a set of empirical orthogonal functions (EOFs). Twin experiments are first performed with the aim to choose the suitable experimental protocol (observation and estimation vectors, number of EOFs, frequency of the assimilation,…) and to assess the SEEK filter performances. This protocol is then applied to perform real data assimilation experiments using the DYFAMED data base. By assimilating phytoplankton observations, the method has allowed to improve not only the representation of the phytoplankton community, but also of other variables such as zooplankton and bacteria that evolve with model dynamics and that are not corrected by the data assimilation scheme. The validation of the assimilation method and the improvement of model results are studied by means of suitable error measurements.

    Ensemble smoother for optimizing tidal boundary conditions and bottom roughness by assimilation of High-Frequency Radar surface currents

    Full text link
    High-Frequency (HF) radars measure the ocean currents at various spatial and temporal scales. These include tidal currents, wind-driven circulation, density-driven circulation and Stokes drift. Sequential assimilation methods updating the model state have been proven successful to correct the density-driven currents by assimilation of observations such as sea surface height, sea surface temperature and in-situ profiles. However, the situation is different for tides in coastal models since these are not generated within the domain, but are rather propagated inside the domain through the boundary conditions. For improving the modeled tidal variability it is therefore not sufficient to update the model state via data assimilation without updating the boundary conditions. The optimization of boundary conditions to match observations inside the domain is traditionally achieved through variational assimilation methods. In this work we present an ensemble smoother to improve the tidal boundary values so that the model represents more closely the observed currents. To create an ensemble of dynamically realistic boundary conditions, a cost function is formulated which is directly related to the probability of each perturbation. This cost function ensures that the perturbations are spatially smooth and that the structure of the perturbations satisfies approximately the harmonic linearized shallow water equations. Based on those perturbations an ensemble simulation is carried out using the full three-dimension General Estuarine Ocean Model (GETM). Optimized boundary values are obtained using all observations within the assimilation period using the covariances of the ensemble simulation

    Solar Photocatalytic Destruction of p-Nitrophenol: A Pedagogical Use of Lab Wastes

    Full text link
    In this article we propose the destruction of p-nitrophenol wastes obtained in a previous lab experiment, to generate a new lab experiment. The recommended destruction technique is solar TiO2-photocatalysis. When the effects of TiO2 and sunlight are tested separately, a slight decrease of p-nitrophenol is observed; but when TiO2 and sunlight are employed together p-nitrophenol disappears in 1 or 2 h. These experiments do not require sophisticated equipment or special lab training for the students. Groups of students tested different experimental conditions, such as the effect of different light intensities and sources (800-W UV-lamp, sunlight on sunny days, and sunlight on a cloudy day) or the addition of H2O2. p-Nitrophenol is degraded under the three light sources but at different rates. The addition of H2O2 to the TiO2-plus-sunlight system enhances p-nitrophenol degradation kinetics when compared with the TiO2 plus sunlight and H2O2 plus sunlight combinations
    corecore