22 research outputs found

    Efficacy of extended infusion of ÎČ-lactam antibiotics for the treatment of febrile neutropenia in haematologic patients : Protocol for a randomised, multicentre, open-label, superiority clinical trial (BEATLE)

    Get PDF
    Altres ajuts: The BEATLE study is a non-commercial, investigator-driven clinical trial funded by the Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0005; RD16/0016/0010) The Spanish Clinical Research Network (SCReN) provides clinical trial data monitoring and oversees pharmacovigilance (PT17/0017/0010).Background: Febrile neutropaenia (FN) is a very common complication in patients with haematological malignancies and is associated with considerable morbidity and mortality. Broad-spectrum antipseudomonal ÎČ-lactam antibiotics (BLA) are routinely used for the treatment of cancer patients with FN. However, the clinical efficacy of BLA may be diminished in these patients because they present with pathophysiological variations that compromise the pharmacokinetic (PK) parameters of these antibiotics. Optimised administration of BLA in prolonged infusions has demonstrated better clinical outcomes in critically ill patients. However, there is a paucity of data on the usefulness of this strategy in patients with FN. The aim of this study is to test the hypothesis that the administration of BLA would be clinically more effective by extended infusion (EI) than by intermittent infusion (II) in haematological patients with FN. Methods: A randomised, multicentre, open-label, superiority clinical trial will be performed. Patients with haematological malignancies undergoing chemotherapy or haematopoietic stem-cell transplant and who have FN and receive empirical antibiotic therapy with cefepime, piperacillin-tazobactam or meropenem will be randomised (1:1) to receive the antibiotic by EI (during half the time of the dosing interval) in the study group, or by II (30 min) in the control group. The primary endpoint will be clinical efficacy, defined as defervescence without modifying the antibiotic treatment administered within the first 5 days of therapy. The primary endpoint will be analysed in the intention-to-treat population. The secondary endpoints will be pharmacokinetic/pharmacodynamic (PK/PD) target achievement, bacteraemia clearance, decrease in C-reactive protein, overall (30-day) case-fatality rate, adverse events and development of a population PK model of the BLA studied. Discussion: Data on the usefulness of BLA administration in patients with FN are scant. Only three clinical studies addressing this issue have been published thus far, with contradictory results. Moreover, these studies had some methodological flaws that limit the interpretation of their findings. If this randomised, multicentre, phase IV, open-label, superiority clinical trial validates the hypothesis that the administration of BLA is clinically more effective by EI than by II in haematological patients with FN, then the daily routine management of these high-risk patients could be changed to improve their outcomes. Trial registration: European Clinical Trials Database: EudraCT 2018-001476-37. ClinicalTrials.gov, ID: NCT04233996

    A Phase I/II Clinical Trial to evaluate the efficacy of baricitinib to prevent respiratory insufficiency progression in onco-hematological patients affected with COVID19: a structured summary of a study protocol for a randomised controlled trial

    Get PDF
    Objectives: Baricitinib is supposed to have a double effect on SARS-CoV2 infection. Firstly, it reduces the inflammatory response through the inhibition of the Januse-Kinase signalling transducer and activator of transcription (JAK-STAT) pathway. Moreover, it reduces the receptor mediated viral endocytosis by AP2-associated protein kinase 1 (AAK1) inhibition. We propose the use of baricinitib to prevent the progression of the respiratory insufficiency in SARS-CoV2 pneumonia in onco-haematological patients. In this phase Ib/II study, the primary objective in the safety cohort is to describe the incidence of severe adverse events associated with baricitinib administration. The primary objective of the randomized phase (baricitinib cohort versus standard of care cohort) is to evaluate the number of patients who did not require mechanical oxygen support since start of therapy until day +14 or discharge (whichever it comes first). The secondary objectives of the study (only randomized phase of the study) are represented by the comparison between the two arms of the study in terms of mortality and toxicity at day+30. Moreover, a description of the immunological related changes between the two arms of the study will be reported. Trial design: The trial is a phase I/II study with a safety run-in cohort (phase 1) followed by an open label phase II randomized controlled trial with an experimental arm compared to a standard of care arm

    Oncostatin m is produced in adipose tissue and is regulated in conditions of obesity and type 2 diabetes

    Get PDF
    CONTEXT: Adipose tissue is a highly active endocrine organ that secretes many factors that affect other tissues and whole-body metabolism. Adipocytes are responsive to several glycoprotein 130 (gp130) cytokines, some of which have been targeted as potential antiobesity therapeutics. OBJECTIVE: Oncostatin M (OSM) is a gp130 family member known to inhibit adipocyte differentiation in vitro, but its effects on other adipocyte properties are not characterized. The expression of OSM in white adipose tissue (WAT) has not been evaluated in the context of obesity. Thus, our objective was to examine the expression of adipose tissue OSM in obese animals and humans. DESIGN: OSM expression was examined in adipose tissues from mice with diet-induced and genetic obesity and in obese humans as well as in fractionated adipose tissue from mice. Murine adipocytes were used to examine OSM receptor expression and the effects of OSM on adipocytes, including the secretion of factors such as plasminogen activator inhibitor 1 and IL-6, which are implicated in metabolic diseases. RESULTS: OSM expression is increased in rodent and human obesity/type 2 diabetes mellitus. In humans, OSM levels correlate with body weight and insulin and are inversely correlated with glucose disposal rate as measured by hyperinsulinemic-euglycemic clamp. OSM is not produced from the adipocytes in WAT but derives from cells in the stromovascular fraction, including F4/80(+) macrophages. The specific receptor of OSM, OSM receptor-ÎČ, is expressed in adipocytes and adipose tissue and increased in both rodent models of obesity examined. OSM acts on adipocytes to induce the expression and secretion of plasminogen activator inhibitor 1 and IL-6. CONCLUSIONS: These data indicate that WAT macrophages are a source of OSM and that OSM levels are significantly induced in murine and human obesity/type 2 diabetes mellitus. These studies suggest that OSM produced from immune cells in WAT acts in a paracrine manner on adipocytes to promote a proinflammatory phenotype in adipose tissue

    Real-Life Use of Ceftolozane/Tazobactam for the Treatment of Bloodstream Infection Due to Pseudomonas aeruginosa in Neutropenic Hematologic Patients: a Matched Control Study (ZENITH Study)

    Get PDF
    We sought to assess the characteristics and outcomes of neutropenic hematologic patients with Pseudomonas aeruginosa (PA) bloodstream infection (BSI) treated with ceftolozane-tazobactam (C/T). We conducted a multicenter, international, matched-cohort study of PA BSI episodes in neutropenic hematologic patients who received C/T. Controls were patients with PA BSI treated with other antibiotics. Risk factors for overall 7-day and 30-day case fatality rates were analyzed. We compared 44 cases with 88 controls. Overall, 91% of episodes were caused by multidrug-resistant (MDR) strains. An endogenous source was the most frequent BSI origin (35.6%), followed by pneumonia (25.8%). There were no significant differences in patient characteristics between groups. C/T was given empirically in 11 patients and as definitive therapy in 41 patients. Treatment with C/T was associated with less need for mechanical ventilation (13.6% versus 33.3%; P = 0.021) and reduced 7-day (6.8% versus 34.1%; P = 0.001) and 30-day (22.7% versus 48.9%; P = 0.005) mortality. In the multivariate analysis, pneumonia, profound neutropenia, and persistent BSI were independent risk factors for 30-day mortality, whereas lower mortality was found among patients treated with C/T (adjusted OR [aOR] of 0.19; confidence interval [CI] 95% of 0.07 to 0.55; P = 0.002). Therapy with C/T was associated with less need for mechanical ventilation and reduced 7-day and 30-day case fatality rates compared to alternative agents in neutropenic hematologic patients with PA BSI. IMPORTANCE Ceftolozane-tazobactam (C/T) has been shown to be a safe and effective alternative for the treatment of difficult to treat infections due to Pseudomonas aeruginosa (PA) in the general nonimmunocompromised population. However, the experience of this agent in immunosuppressed neutropenic patients is very limited. Our study is unique because it is focused on extremely immunosuppressed hematological patients with neutropenia and bloodstream infection (BSI) due to PA (mainly multidrug resistant [MDR]), a scenario which is often associated with very high mortality rates. In our study, we found that the use of C/T for the treatment of MDR PA BSI in hematological neutropenic patients was significantly associated with improved outcomes, and, in addition, it was found to be an independent risk factor associated with increased survival. To date, this is the largest series involving neutropenic hematologic patients with PA BSI treated with C/T

    Clinical Predictive Model of Multidrug Resistance in Neutropenic Cancer Patients with Bloodstream Infection Due to Pseudomonas aeruginosa

    No full text
    Carratala, Jordi/0000-0003-3209-2563; Gomes, Marisa ZR/0000-0001-6492-1034; Abdala, Edson/0000-0003-0765-6654; MORALES, HUGO MANUEL/0000-0001-7913-8958; Gudiol, Carlota/0000-0003-3095-4422; Larrosa, Maria Nieves/0000-0001-8808-0233WOS: 000521752600065PubMed: 32015035We aimed to assess the rate and predictive factors of bloodstream infection (BSI) due to multidrug-resistant (MDR) Pseudomonas aeruginosa in neutropenic cancer patients. We performed a multicenter, retrospective cohort study including oncohematological neutropenic patients with BSI due to P. aeruginosa conducted across 34 centers in 12 countries from January 2006 to May 2018. A mixed logistic regression model was used to estimate a model to predict the multidrug resistance of the causative pathogens. of a total of 1,217 episodes of BSI due to P. aeruginosa, 309 episodes (25.4%) were caused by MDR strains. the rate of multidrug resistance increased significantly over the study period (P = 0.033). Predictors of MDR P. aeruginosa BSI were prior therapy with piperacillin-tazobactam (odds ratio [OR), 3.48; 95% confidence interval [CI], 2.29 to 5.30), prior antipseudomonal carbapenem use (OR, 2.53; 95% CI, 1.65 to 3.87), fluoroquinolone prophylaxis (OR, 2.99; 95% CI, 1.92 to 4.64), underlying hematological disease (OR, 2.09; 95% CI, 1.26 to 3.44), and the presence of a urinary catheter (OR, 2.54; 95% CI, 1.65 to 3.91), whereas older age (OR, 0.98; 95% CI, 0.97 to 0.99) was found to be protective. Our prediction model achieves good discrimination and calibration, thereby identifying neutropenic patients at higher risk of BSI due to MDR P. aeruginosa. the application of this model using a web-based calculator may be a simple strategy to identify high-risk patients who may benefit from the early administration of broad-spectrum antibiotic coverage against MDR strains according to the local susceptibility patterns, thus avoiding the use of broad-spectrum antibiotics in patients at a low risk of resistance development.ESGBIES study group; ESGICH study group; Spanish Plan Nacional de I+D+i 2013-2016; Instituto de Salud Carlos III, Subdireccion General de Redes y Centros de Investigacion Cooperativa, Ministerio de Economia, Industria y Competitividad, Spanish Network for Research in Infectious Diseases [REIPI RD16/0016/0001]; European Development Regional Fund A Way To Achieve Europe, Operative Program Intelligent Growth 2014-2020; Promex Stiftung fur die Forschung (Carigest SA); GileadGilead Sciences; PfizerPfizerWe thank the ESGBIES and the ESGICH study groups for supporting the study.; This study was supported by the Spanish Plan Nacional de I+D+i 2013-2016 and the Instituto de Salud Carlos III, Subdireccion General de Redes y Centros de Investigacion Cooperativa, Ministerio de Economia, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (grant REIPI RD16/0016/0001), cofinanced by the European Development Regional Fund A Way To Achieve Europe, Operative Program Intelligent Growth 2014-2020.; A.-S.B. received a grant from Promex Stiftung fur die Forschung (via Carigest SA) and funding from Gilead to attend the ECCMID Congress (2018). O.R.S. received speaker honoraria from MSD, Astellas, Novartis, and Pfizer. S.S.K. received speaker honoraria from Pfizer, MSD, Astellas. F.H. received speaker honoraria from MSD, and Pfizer and a research and educational grant from Pfizer. the rest of the authors declare no conflicts of interest

    Modulation of vascular smooth muscle cell phenotype by STAT-1 and STAT-3

    No full text
    ObjectiveSmooth muscle cell (SMC) de-differentiation is a key step that leads to pathological narrowing of blood vessels. De-differentiation involves a reduction in the expression of the SMC contractile genes that are the hallmark of quiescent SMCs. While there is considerable evidence linking inflammation to vascular diseases, very little is known about the mechanisms by which inflammatory signals lead to SMC de-differentiation. Given that the Signal Transducers and Activators of Transcription (STAT) transcriptional factors are the key signaling molecules activated by many inflammatory cytokines and growth factors, the aim of the present study was to determine if STAT transcriptional factors play a role SMC de-differentiation.Methods and resultsUsing shRNA targeted to STAT-1 and STAT-3, we show by real time RT-PCR and Western immunoblots that STAT-1 significantly reduces SMC contractile gene expression. In contrast, STAT-3 promotes expression of SMC contractile genes. Over-expression studies of STAT-1 and STAT-3 confirmed our observation that STAT-1 down-regulates whereas STAT-3 promotes SMC contractile gene expression. Bioinformatics analysis shows that promoters of all SMC contractile genes contain STAT binding sites. Finally, using ChIP analysis, we show that both STAT-1 and STAT-3 associate with the calponin gene.ConclusionThese data indicate that the balance of STAT-1 and STAT-3 influences the differentiation status of SMCs. Increased levels of STAT-1 promote SMC de-differentiation, whereas high levels of STAT-3 drive SMC into a more mature phenotype. Thus, inhibition of STAT-1 may represent a novel target for therapeutic intervention in the control of vascular diseases such as atherosclerosis and restenosis

    Efficacy of extended infusion of ÎČ-lactam antibiotics for the treatment of febrile neutropenia in haematologic patients : Protocol for a randomised, multicentre, open-label, superiority clinical trial (BEATLE)

    No full text
    Altres ajuts: The BEATLE study is a non-commercial, investigator-driven clinical trial funded by the Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0005; RD16/0016/0010) The Spanish Clinical Research Network (SCReN) provides clinical trial data monitoring and oversees pharmacovigilance (PT17/0017/0010).Background: Febrile neutropaenia (FN) is a very common complication in patients with haematological malignancies and is associated with considerable morbidity and mortality. Broad-spectrum antipseudomonal ÎČ-lactam antibiotics (BLA) are routinely used for the treatment of cancer patients with FN. However, the clinical efficacy of BLA may be diminished in these patients because they present with pathophysiological variations that compromise the pharmacokinetic (PK) parameters of these antibiotics. Optimised administration of BLA in prolonged infusions has demonstrated better clinical outcomes in critically ill patients. However, there is a paucity of data on the usefulness of this strategy in patients with FN. The aim of this study is to test the hypothesis that the administration of BLA would be clinically more effective by extended infusion (EI) than by intermittent infusion (II) in haematological patients with FN. Methods: A randomised, multicentre, open-label, superiority clinical trial will be performed. Patients with haematological malignancies undergoing chemotherapy or haematopoietic stem-cell transplant and who have FN and receive empirical antibiotic therapy with cefepime, piperacillin-tazobactam or meropenem will be randomised (1:1) to receive the antibiotic by EI (during half the time of the dosing interval) in the study group, or by II (30 min) in the control group. The primary endpoint will be clinical efficacy, defined as defervescence without modifying the antibiotic treatment administered within the first 5 days of therapy. The primary endpoint will be analysed in the intention-to-treat population. The secondary endpoints will be pharmacokinetic/pharmacodynamic (PK/PD) target achievement, bacteraemia clearance, decrease in C-reactive protein, overall (30-day) case-fatality rate, adverse events and development of a population PK model of the BLA studied. Discussion: Data on the usefulness of BLA administration in patients with FN are scant. Only three clinical studies addressing this issue have been published thus far, with contradictory results. Moreover, these studies had some methodological flaws that limit the interpretation of their findings. If this randomised, multicentre, phase IV, open-label, superiority clinical trial validates the hypothesis that the administration of BLA is clinically more effective by EI than by II in haematological patients with FN, then the daily routine management of these high-risk patients could be changed to improve their outcomes. Trial registration: European Clinical Trials Database: EudraCT 2018-001476-37. ClinicalTrials.gov, ID: NCT04233996

    Efficacy of extended infusion of ÎČ-lactam antibiotics for the treatment of febrile neutropenia in haematologic patients: protocol for a randomised, multicentre, open-label, superiority clinical trial (BEATLE)

    No full text
    Background: Febrile neutropaenia (FN) is a very common complication in patients with haematological malignancies and is associated with considerable morbidity and mortality. Broad-spectrum antipseudomonal ÎČlactam antibiotics (BLA) are routinely used for the treatment of cancer patients with FN. However, the clinical efficacy of BLA may be diminished in these patients because they present with pathophysiological variations that compromise the pharmacokinetic (PK) parameters of these antibiotics. Optimised administration of BLA in prolonged infusions has demonstrated better clinical outcomes in critically ill patients. However, there is a paucity of data on the usefulness of this strategy in patients with FN. The aim of this study is to test the hypothesis that the administration of BLA would be clinically more effective by extended infusion (EI) than by intermittent infusion (II) in haematological patients with FN. Methods: A randomised, multicentre, open-label, superiority clinical trial will be performed. Patients with haematological malignancies undergoing chemotherapy or haematopoietic stem-cell transplant and who have FN and receive empirical antibiotic therapy with cefepime, piperacillin-tazobactam or meropenem will be randomised (1:1) to receive the antibiotic by EI (during half the time of the dosing interval) in the study group, or by II (30 min) in the control group. The primary endpoint will be clinical efficacy, defined as defervescence without modifying the antibiotic treatment administered within the first 5 days of therapy. The primary endpoint will be analysed in the intention-to-treat population. The secondary endpoints will be pharmacokinetic/pharmacodynamic (PK/PD) target achievement, bacteraemia clearance, decrease in C-reactive protein, overall (30-day) case-fatality rate, adverse events and development of a population PK model of the BLA studied. Discussion: Data on the usefulness of BLA administration in patients with FN are scant. Only three clinical studies addressing this issue have been published thus far, with contradictory results. Moreover, these studies had some methodological flaws that limit the interpretation of their findings. If this randomised, multicentre, phase IV, open-label, superiority clinical trial validates the hypothesis that the administration of BLA is clinically more effective by EI than by II in haematological patients with FN, then the daily routine management of these high-risk patients could be changed to improve their outcomes. Trial registration: European Clinical Trials Database: EudraCT 2018–001476-37. ClinicalTrials.gov, ID: NCT04233996
    corecore